biomolecular fluorescence complementation
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 4)

H-INDEX

0
(FIVE YEARS 0)

Blood ◽  
2021 ◽  
Author(s):  
Xiaobing Yu ◽  
Leonel Munoz-Sagredo ◽  
Karolin Streule ◽  
Patricia Muschong ◽  
Elisabeth Bayer ◽  
...  

Acute myeloid leukemia (AML) has a poor prognosis under the current standard of care. In recent years, venetoclax, a BCL-2 inhibitor, was approved to treat patients, ineligible for intensive induction chemotherapy. Complete remission rates with venetoclax-based therapies are, however, hampered by minimal residual disease (MRD) in a proportion of patients, leading to relapse. MRD is due to leukemic stem cells retained in bone marrow protective environments; activation of the CXCL12/CXCR4 pathway was shown to be relevant to this process. An important role is also played by cell adhesion molecules such as CD44, which has been shown to be crucial for AML development. Here we show that CD44 is involved in CXCL12 promotion of resistance to venetoclax-induced apoptosis in human AML cell lines and AML patient samples which could be abrogated by CD44 knockdown, knockout or blocking with an anti-CD44 antibody. Split-Venus biomolecular fluorescence complementation showed that CD44 and CXCR4 physically associate at the cell membrane upon CXCL12 induction. In the venetoclax-resistant OCI-AML3 cell line, CXCL12 promoted an increase in the proportion of cells expressing high levels of embryonic-stem-cell core transcription factors (ESC-TFs: Sox2, Oct4, Nanog), abrogated by CD44 knockdown. This ESC-TF-expressing subpopulation which could be selected by venetoclax treatment, exhibited a basally-enhanced resistance to apoptosis, and expressed higher levels of CD44. Finally, we developed a novel AML xenograft model in zebrafish, showing that CD44 knockout sensitizes OCI-AML3 cells to venetoclax treatment in vivo. Our study shows that CD44 is a potential molecular target to sensitize AML cells to venetoclax-based therapies.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xinyi Wu ◽  
Jianqiang Wu ◽  
Yu Wang ◽  
Meiwen He ◽  
Mingming He ◽  
...  

AbstractIn plants and algae, PGR5-dependent cyclic electron flow (CEF) is an important regulator of acclimation to fluctuating environments, but how PGR5 participates in CEF is unclear. In this work, we analyzed two PGR5s in cucumber (Cucumis sativus L.) under different conditions and found that CsPGR5a played the dominant role in PGR5-dependent CEF. The results of yeast two-hybrid, biomolecular fluorescence complementation (BiFC), blue native PAGE, and coimmunoprecipitation (CoIP) assays showed that PGR5a interacted with PetC, Lhcb3, and PsaH. Furthermore, the intensity of the interactions was dynamic during state transitions, and the abundance of PGR5 attached to cyt b6f decreased during the transition from state 1 to state 2, which revealed that the function of PGR5a is related to the state transition. We proposed that PGR5 is a small mobile protein that functions when attached to protein complexes.


2021 ◽  
Vol 9 (2) ◽  
pp. 418
Author(s):  
Mikhail Oliveira Leastro ◽  
Juliana Freitas-Astúa ◽  
Elliot Watanabe Kitajima ◽  
Vicente Pallás ◽  
Jesús Á. Sánchez-Navarro

Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.


Author(s):  
Xiameng Xu ◽  
Zhengyin Xu ◽  
Wenxiu Ma ◽  
Fazal Haq ◽  
Ying Li ◽  
...  

Abstract Xa1-mediated resistance to rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is triggered by transcription activator-like effectors (TALEs) and suppressed by interfering TALEs (iTALEs). TALEs interact with the rice transcription factor OsTFIIAγ1 or OsTFIIAγ5 (Xa5) to transcriptionally activate expression of target resistance and/or susceptibility genes. However, it is not clear whether OsTFIIAγ is involved in TALE-triggered and iTALE-suppressed Xa1 resistance. In this study, genome-edited mutations in OsTFIIAγ5 or OsTFIIAγ1 of Xa1-containing rice IRBB1 and Xa1-transgenic plants of xa5-containing rice IRBB5 did not impair the activation or suppression of Xa1 resistance. Correspondingly, the expression pattern of Xa1 in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines and IRBB1 rice was similar. In contrast, the expression of OsSWEET11 was repressed in mutated OsTFIIAγ5 and OsTFIIAγ1 rice lines. Biomolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) showed that both the TALE PthXo1 and iTALE Tal3a interacted with OsTFIIAγ1 and OsTFIIAγ5 in plant nuclei. These results indicate that TALE-triggered and iTALE-suppressed Xa1 resistance to BB is independent of OsTFIIAγ1 or OsTFIIAγ5 in rice and suggest that an unknown factor is potentially involved in the interaction of Xa1, TALEs and iTALEs in rice.


Sign in / Sign up

Export Citation Format

Share Document