scholarly journals An emerging simple and effective approach to increase the productivity of thraustochytrids microbial lipids by regulating glycolysis process and triacylglycerols’ decomposition

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wang Ma ◽  
Yu-Zhou Wang ◽  
Fang-Tong Nong ◽  
Fei Du ◽  
Ying-Shuang Xu ◽  
...  

Abstract Background The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. Results Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs’ degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the β-oxidation pathway. Conclusions This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.

Marinade ◽  
2020 ◽  
Vol 3 (02) ◽  
pp. 159-167
Author(s):  
M. Desra Hari Putra ◽  
R. Marwita Sari Putri ◽  
Yulia Oktavia ◽  
Aidil Fadli Ilhamdy

Formation of feather shells (Anadara antiquata) which has been carried out the characteristics of amino acids and fatty acids obtained the highest amino acid yield is Arginine 10293.28, and the lowest histidine is 136.91. The highest saturated fatty acid is palmitic which is 1.20 and the lowest lauric acid is 0.09, the highest monounsaturated fatty acid is glutamic acid 17257.96, and the lowest is alanine 312.56, the highest polyunsaturated fatty acid is linoleic 0.58, linolenic acid 0.58, and the lowest arachidonic acid 0.29.


2021 ◽  
Vol 83 (2) ◽  
pp. 27-35
Author(s):  
Syafiqah Md Nadzir ◽  
Norjan Yusof ◽  
Norazela Nordin ◽  
Azlan Kamari ◽  
Mohd Zulkhairi Mohd Yusoff

Nitrogen stress condition is believed to increase the production of lipid in microalgae, but the synthesis of both lipid and carbohydrate is less known. Therefore, the effect of nitrogen stress condition on the synthesis of lipid and carbohydrate of Tetradesmus obliquus UPSI-JRM02 was studied in a 2 L bioreactor system. The highest lipid and carbohydrate yields achieved under nitrogen stress condition were 37% and 23%, respectively. Nitrogen stress condition induced the accumulation of carbohydrate at early stage but started to reduce on day 4 when the carbon shifted towards lipid production.  The fatty acid profile produced under nitrogen stress condition was composed of 54% polyunsaturated fatty acid (PUFA), 43% saturated fatty acid (SFA) and 3% monounsaturated fatty acid (MUFA). The biofuel properties of T. obliquus obtained under the nitrogen stress condition was within the range of biodiesel standard and is most suitable for the usage in cold country.


2021 ◽  
Vol 9 (11) ◽  
pp. 2295
Author(s):  
Andrea Němcová ◽  
Martin Szotkowski ◽  
Ota Samek ◽  
Linda Cagáňová ◽  
Matthias Sipiczki ◽  
...  

Oleogenic yeasts are characterized by the ability to accumulate increased amounts of lipids under certain conditions. These microbial lipids differ in their fatty acid composition, which allows them to be widely used in the biotechnology industry. The interest of biotechnologists is closely linked to the rising prices of fossil fuels in recent years. Their negative environmental impact is caused by significantly increased demand for biodiesel. The composition of microbial lipids is very similar to vegetable oils, which provides great potential for use in the production of biodiesel. In addition, some oleogenic microorganisms are capable of producing lipids with a high proportion of unsaturated fatty acids. The presented paper’s main aim was to study the production of lipids and lipid substances by yeasts of the genus Metschnikowia, to cultivate crude waste animal fat to study its utilization by yeasts, and to apply the idea of circular economy in the biotechnology of Metschnikowia yeasts. The work focuses on the influence of various stress factors in the cultivation process, such as reduced temperature or nutritional stress through the use of various waste substrates, together with manipulating the ratio of carbon and nitrogen sources in the medium. Yeast production properties were monitored by several instrumental techniques, including gas chromatography and Raman spectroscopy. The amount of lipids and in particular the fatty acid composition varied depending on the strains studied and the culture conditions used. The ability of yeast to produce significant amounts of unsaturated fatty acids was also demonstrated in the work. The most suitable substrate for lipid production was a medium containing glycerol, where the amount of accumulated lipids in the yeast M. pulcherrima 1232 was up to 36%. In our work, the crude animal fat was used for the production of high-value lipids, which to the best of our knowledge is a new result. Moreover, quantitative screening of lipase enzyme activity cultivated on animal fat substrate on selected yeasts of the genus Metschnikowia was performed. We found that for the yeast utilizing glycerol, animal fat seems to be an excellent source of carbon. Therefore, the yeast conversion of crude processed animal fat to value-added products is a valuable process for the biotechnology and food industry.


Diabetes ◽  
1994 ◽  
Vol 43 (4) ◽  
pp. 540-545 ◽  
Author(s):  
J. W. Hunnicutt ◽  
R. W. Hardy ◽  
J. Williford ◽  
J. M. McDonald

1914 ◽  
Vol 16 (4) ◽  
pp. 419-422
Author(s):  
P.A. Levene ◽  
C.J. West

Author(s):  
Ikumi Umetani ◽  
Eshetu Janka ◽  
Michal Sposób ◽  
Chris J. Hulatt ◽  
Synne Kleiven ◽  
...  

AbstractBicarbonate was evaluated as an alternative carbon source for a green microalga, Tetradesmus wisconsinensis, isolated from Lake Norsjø in Norway. Photosynthesis, growth, and lipid production were studied using four inorganic carbon regimes: (1) aeration only, (2) 20 mM NaHCO3, (3) 5% (v/v) CO2 gas, and (4) combination of 20 mM NaHCO3 and 5% CO2. Variable chlorophyll a fluorescence analysis revealed that the bicarbonate treatment supported effective photosynthesis, while the CO2 treatment led to inefficient photosynthetic activity with a PSII maximum quantum yield as low as 0.31. Conversely, bicarbonate and CO2 treatments gave similar biomass and fatty acid production. The maximum growth rate, the final cell dry weight, and total fatty acids under the bicarbonate-only treatment were 0.33 (± 0.06) day−1, 673 (± 124) mg L−1 and 75 (± 5) mg g−1 dry biomass, respectively. The most abundant fatty acid components were α-linolenic acid and polyunsaturated fatty acids constituting 69% of the total fatty acids. The fatty acid profile eventuated in unsuitable biodiesel fuel properties such as high degree of unsaturation and low cetane number; however, it would be relevant for food and feed applications. We concluded that bicarbonate could give healthy growth and comparative product yields as CO2.


2020 ◽  
Vol 147 (11) ◽  
pp. 3019-3028
Author(s):  
Honglin Cai ◽  
Tomotaka Sobue ◽  
Tetsuhisa Kitamura ◽  
Junko Ishihara ◽  
Norie Sawada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document