scholarly journals Heterologous Expression of Two Malate Transporters From an Oleaginous Fungus Mucor circinelloides Improved the Lipid Accumulation in Mucor lusitanicus

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuwen Wang ◽  
Hassan Mohamed ◽  
Yonghong Bao ◽  
Chen Wu ◽  
Wenyue Shi ◽  
...  

The fungus, Mucor lusitanicus, is of great interest for microbial lipids, because of its ability to accumulate intracellular lipid using various carbon sources. The biosynthesis of fatty acid requires the reducing power NADPH, and acetyl-CoA, which is produced by the cleavage of citrate in cytosol. In this study, we employed different strategies to increase lipid accumulation in the low lipid-producing fungi via metabolic engineering technology. Hence, we constructed the engineered strain of M. lusitanicus CBS 277.49 by using malate transporter (mt) and 2-oxoglutarate: malate antiporter (sodit) from M. circinelloides WJ11. In comparison with the control strain, the lipid content of the overexpressed strains of mt and sodit genes were increased by 24.6 and 33.8%, respectively. These results showed that mt and sodit can affect the distribution of malate in mitochondria and cytosol, provide the substrates for the synthesis of citrate in the mitochondria, and accelerate the transfer of citrate from mitochondria to cytosol, which could play a significant regulatory role in fatty acid synthesis leading to lipids over accumulation.

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 35 ◽  
Author(s):  
Hussain ◽  
Nazir ◽  
Hameed ◽  
Yang ◽  
Mustafa ◽  
...  

Keywords: Mucor circinelloides; microbial lipids; medium-chain fatty acids; culture optimization


1974 ◽  
Vol 142 (3) ◽  
pp. 611-618 ◽  
Author(s):  
D. Michael W. Salmon ◽  
Neil L. Bowen ◽  
Douglas A. Hems

1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of3H from3H2O (1–7μmol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-14C]lactic acid and [U-14C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of3H2O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12–16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with3H2O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.


2014 ◽  
Vol 80 (9) ◽  
pp. 2672-2678 ◽  
Author(s):  
G. Hao ◽  
H. Chen ◽  
L. Wang ◽  
Z. Gu ◽  
Y. Song ◽  
...  

Author(s):  
Ke Fang ◽  
Fan Wu ◽  
Guang Chen ◽  
Hui Dong ◽  
Jingbin Li ◽  
...  

Abstract Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is characterized by excessive hepatic lipid accumulation. Many studies have suggested that lipid overload is the key initial factor that contributes to hepatic steatosis. Our previous study indicated that diosgenin (DSG) has a beneficial effect on energy metabolism, but the underlying mechanism remains unclear. Methods Human normal hepatocytes (LO2 cells) were incubated with palmitic acid to establish the cell model of nonalcoholic fatty liver. The effects of DSG on lipid metabolism, glucose uptake and mitochondrial function were evaluated. Furthermore, the mechanism of DSG on oxidative stress, lipid consumption and lipid synthesis in LO2 cells was investigated. Results The results indicated that palmitic acid induced obvious lipid accumulation in LO2 cells and that DSG treatment significantly reduced the intracellular lipid content. DSG treatment upregulated expression of lipolysis proteins, including phospho-AMP activated protein kinase (p-AMPK), phospho-acetyl-coA carboxylase (p-ACC) and carnitine acyl transferase 1A (CPT-1A), and inhibited expression of lipid synthesis-related proteins, including sterol regulatory element-binding protein 1c (SREBP-1c) and fatty acid synthase (FAS). Additionally, DSG-treated cells displayed a marked improvement in mitochondrial function, with less production of reactive oxygen species and a higher mitochondrial membrane potential compared with the model group. Conclusion This study suggests that DSG can reduce intracellular lipid accumulation in LO2 cells and that the underlying mechanism may be related to the improving oxidative stress, increasing fatty acid β-oxidation and decreasing lipid synthesis. The above changes might be mediated by the activation of the AMPK/ACC/CPT-1A pathway and inhibition of the SREBP-1c/FAS pathway.


2005 ◽  
Vol 56 (415) ◽  
pp. 1297-1303 ◽  
Author(s):  
Rafael Pleite ◽  
Marilyn J. Pike ◽  
Rafael Garcés ◽  
Enrique Martínez-Force ◽  
Stephen Rawsthorne

2015 ◽  
Vol 197 ◽  
pp. 23-29 ◽  
Author(s):  
Lina Zhao ◽  
Huaiyuan Zhang ◽  
Liping Wang ◽  
Haiqin Chen ◽  
Yong Q. Chen ◽  
...  

1970 ◽  
Vol 117 (5) ◽  
pp. 861-877 ◽  
Author(s):  
B. R. Martin ◽  
R. M. Denton

1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25°C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD–isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP–malate dehydrogenase (11.0), ATP–citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP–isocitrate dehydrogenase (3.7), NAD–malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109μg/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3–6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP–citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.


iScience ◽  
2022 ◽  
pp. 103766
Author(s):  
Keerthana B ◽  
Raghavender Medishetti ◽  
Jyothi Kotha ◽  
Parameshwar Behera ◽  
Kanika Chandra ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 300 ◽  
Author(s):  
Tsakona ◽  
Papadaki ◽  
Kopsahelis ◽  
Kachrimanidou ◽  
Papanikolaou ◽  
...  

Diversified mixed confectionery waste streams were utilized in a two-stage bioprocess to formulate a nutrient-rich fermentation media for microbial oil production. Solid-state fermentation was conducted for the production of crude enzyme consortia to be subsequently applied in hydrolytic reactions to break down starch, disaccharides, and proteins into monosaccharides, amino acids, and peptides. Crude hydrolysates were evaluated in bioconversion processes using the red yeast Rhodosporidium toruloides DSM 4444 both in batch and fed-batch mode. Under nitrogen-limiting conditions, during fed-batch cultures, the concentration of microbial lipids reached 16.6–17 g·L−1 with the intracellular content being more than 40% (w/w) in both hydrolysates applied. R. toruloides was able to metabolize mixed carbon sources without catabolite repression. The fatty acid profile of the produced lipids was altered based on the substrate employed in the bioconversion process. Microbial lipids were rich in polyunsaturated fatty acids, with oleic acid being the major fatty acid (61.7%, w/w). This study showed that mixed food side-streams could be valorized for the production of microbial oil with high unsaturation degree, pointing towards the potential to produce tailor-made lipids for specific food applications. Likewise, the proposed process conforms unequivocally to the principles of the circular economy, as the entire quantity of confectionery by-products are implemented to generate added-value compounds that will find applications in the same original industry, thus closing the loop.


Endocrinology ◽  
2014 ◽  
Vol 155 (4) ◽  
pp. 1498-1509 ◽  
Author(s):  
Maria Schindler ◽  
Mareike Pendzialek ◽  
Alexander Navarrete Santos ◽  
Torsten Plösch ◽  
Stefanie Seyring ◽  
...  

According to the “developmental origin of health and disease” hypothesis, the metabolic set points of glucose and lipid metabolism are determined prenatally. In the case of a diabetic pregnancy, the embryo is exposed to higher glucose and lipid concentrations as early as during preimplantation development. We used the rabbit to study the effect of maternal diabetes type 1 on lipid accumulation and expression of lipogenic markers in preimplantation blastocysts. Accompanied by elevated triglyceride and glucose levels in the maternal blood, embryos from diabetic rabbits showed a massive intracellular lipid accumulation and increased expression of fatty acid transporter 4, fatty acid–binding protein 4, perilipin/adipophilin, and maturation of sterol-regulated element binding protein. However, expression of fatty acid synthase, a key enzyme for de novo synthesis of fatty acids, was not altered in vivo. During a short time in vitro culture of rabbit blastocysts, the accumulation of lipid droplets and expression of lipogenic markers were directly correlated with increasing glucose concentration, indicating that hyperglycemia leads to increased lipogenesis in the preimplantation embryo. Our study shows the decisive effect of glucose as the determining factor for fatty acid metabolism and intracellular lipid accumulation in preimplantation embryos.


Sign in / Sign up

Export Citation Format

Share Document