shrinking core model
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Kevin Cleary Wanta ◽  
◽  
Ivanna Crecentia Narulita Simanungkalit ◽  
Elsha Pamida Bahri ◽  
Ratna Frida Susanti ◽  
...  

As one of the hazardous and toxic solid wastes, spent catalysts need to be treated before the waste is discharged into the environment. One of the substances that need to be removed from the spent catalysts is the heavy metal ions and/or compounds contained therein. The method that can be applied is the extraction method using an acid solvent. In this study, the extraction process was carried out on spent catalysts samples from PT. Petrokimia Gresik. The focus of the study is on nickel extraction by varying the temperature in the range of 30–85 oC. A 1 M hydrochloric acid (HCl) solution was used as a solvent while the extraction process was 120 minutes. The experimental results show that the maximum nickel recovery of 14.70% can be achieved at a temperature of 85 oC. Kinetic studies were carried out using two kinetic models. The results of both models evaluation on the research data show that the lump model gives better results than the shrinking core model. The average error percentage of the lump model is smaller than the shrinking core model. It indicates that the extraction process was controlled by the diffusion step through the ash layer in the solid and chemical reactions simultaneously.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5576
Author(s):  
Bryan Carrasco ◽  
Edward Ávila ◽  
Alfredo Viloria ◽  
Marvin Ricaurte

Natural gas sweetening is an essential process within hydrocarbon processing operations, enabling compliance with product quality specifications, avoiding corrosion problems, and enabling environmental care. This process aims to remove hydrogen sulfide (H2S), carbon dioxide, or both contaminants. It can be carried out in fixed-bed adsorption towers, where iron oxide-based solid sorbent reacts with the H2S to produce iron sulfides. This study is set out to develop a fluid-dynamic model that allows calculating the pressure drop in the H2S adsorption towers with the novelty to integrate reactivity aspects, through an iron sulfide layer formation on the solid particles’ external skin. As a result of the layer formation, changes in the particle diameter and the bed void fraction of the solid sorbent tend to increase the pressure drop. The shrinking-core model and the H2S adsorption front variation in time support the model development. Experimental data on pressure drop at the laboratory scale and industrial scale allowed validating the proposed model. Moreover, the model estimates the bed replacement frequency, i.e., the time required to saturate the fixed bed, requiring its replacement or regeneration. The model can be used to design and formulate new solid sorbents, analyze adsorption towers already installed, and help maintenance-planning operations.


2021 ◽  
Author(s):  
Ao Zhang

<p><b>To reduce the emission of carbon dioxide (CO2) from industrial ironmaking in New Zealand (NZ), it is proposed to perform direct reduction (DR) of NZ titanomagnetite ironsand pellets using H2 gas. In this thesis, the H2 reduction behaviour of pellets made from the NZ ironsand are examined. The aim of the thesis is to understand the reduction mechanism, and develop an analytical kinetic model to describe the reduction progress with time. This has been addressed through a series of reduction experiments in H2 gas. The overall reduction kinetics are examined in a Thermogravimetric analysis system (TGA); the phase evolution during reduction is measured by an in-situ neutron diffraction (ND) method; and the evolution of pellet- and particle-scale morphologies are analysed by scanning electron microscopy (SEM) of quenched samples. Based on the analysis of results from these experiments, the mechanism of the reduction is found to be adequately described by a single interface shrinking core model (SCM). </b></p><p>Two different types of pellet are considered in this work: Ar-sintered pellets were sintered in an inert atmosphere to produce pellets containing mainly titanomagnetite (TTM). Pre-oxidised pellets were sintered in air to produce pellets containing mainly titanohematite (TTH). The reduction rate of both types of pellets is found to increase with reduction temperature, H2 gas flow rate, and H2 gas concentration. Above 1143 K, it is found that both types of pellets present a similar reduction rate, while below 1143 K, the reduction of pre-oxidised pellets is much faster than that of Ar-sintered pellets. For both pellets, the maximum reduction degree can reach ~97%. After complete reduction, metallic Fe coexists with other unreduced Fe-Ti-O phases (FeTiO3, TiO2 or pseudobrookite (PSB)/ferro-PSB), which is consistent with the observed reduction degree of < 100%. </p><p>During reduction of both types of pellets, any TTH present is rapidly reduced first. After this step, TTM is then reduced to FeO, with Ti becoming enriched in the remaining unreduced TTM. FeO is further reduced to metallic Fe, which makes up to ~90% reduction degree. Eventually Ti-enrichment of the TTM leads to a change in the reduction pathway and it instead directly converts to metallic Fe and FeTiO3. Above ~90% reduction degree, reduction of the remaining Fe-Ti-O phases occurs (leading to the formation of TiO2 or PSB/ferro-PSB). </p><p>The enrichment of Ti in TTM which accompanies the generation of FeO is substantially different from conventional non-titaniferous ores. This enrichment is confirmed by EDS-maps of the particles and stoichiometric calculations of the molar fraction Ti within the TTM phase. This enrichment effect changes the morphology of FeO in the particles, leading to the formation of FeO channels surrounded by Ti-enriched TTM. </p><p>At the pellet-scale, both types of pellets present a single interface shrinking core phenomenon at higher temperatures. Metallic Fe is generated from pellet surface with a reaction interface moving inwards. However, at lower temperatures this pellet-scale interface becomes less defined in the pellets. Instead, particle-scale reaction fronts are observed. </p><p>A single interface shrinking core model (SCM) is shown to successfully describe the reduction of pellets for reduction degrees < ~90% at all temperatures studied. However, at reduction degrees > ~90% this model fails. This is attributed to the change in reaction mechanism required to reduce the residual Fe-Ti-O phases that remain dispersed throughout the whole pellet at this stage of the reaction. The single interface SCM indicates that the reduction rate of the Ar-sintered pellets is controlled by the interfacial chemical reaction rate. However, two different temperature regimes are identified. Above 1193 K, the activation energy is calculated to be 41 ± 1 kJ/mol, but below 1193 K the calculated activation energy increases to 89 ± 5 kJ/mol. This change in activation energy appears to be associated with the change of the rate-limiting reaction from FeO → metallic Fe to TTM → FeO. By contrast, the pre-oxidised pellets exhibit mixed control at 1043 K, where a role is played by both the interfacial chemical reaction rate and the diffusion rate through the outer product layer. However, at temperatures of 1143 K and above, the pre-oxidised pellets also exhibit interfacial chemical reaction control, with a single activation energy of 31 ± 1 kJ/mol, which again seems to be consistent the rate-limiting reaction being FeO → metallic Fe. </p><p>In summary, the findings in this thesis contribute to understanding of the reduction of NZ ironsand pellets in H2 gas, and establish a kinetic model to describe this process. In the future, this information will be applied to develop a prototype H2-DRI shaft reactor for NZ ironsand pellets. </p>


2021 ◽  
Author(s):  
Ao Zhang

<p><b>To reduce the emission of carbon dioxide (CO2) from industrial ironmaking in New Zealand (NZ), it is proposed to perform direct reduction (DR) of NZ titanomagnetite ironsand pellets using H2 gas. In this thesis, the H2 reduction behaviour of pellets made from the NZ ironsand are examined. The aim of the thesis is to understand the reduction mechanism, and develop an analytical kinetic model to describe the reduction progress with time. This has been addressed through a series of reduction experiments in H2 gas. The overall reduction kinetics are examined in a Thermogravimetric analysis system (TGA); the phase evolution during reduction is measured by an in-situ neutron diffraction (ND) method; and the evolution of pellet- and particle-scale morphologies are analysed by scanning electron microscopy (SEM) of quenched samples. Based on the analysis of results from these experiments, the mechanism of the reduction is found to be adequately described by a single interface shrinking core model (SCM). </b></p><p>Two different types of pellet are considered in this work: Ar-sintered pellets were sintered in an inert atmosphere to produce pellets containing mainly titanomagnetite (TTM). Pre-oxidised pellets were sintered in air to produce pellets containing mainly titanohematite (TTH). The reduction rate of both types of pellets is found to increase with reduction temperature, H2 gas flow rate, and H2 gas concentration. Above 1143 K, it is found that both types of pellets present a similar reduction rate, while below 1143 K, the reduction of pre-oxidised pellets is much faster than that of Ar-sintered pellets. For both pellets, the maximum reduction degree can reach ~97%. After complete reduction, metallic Fe coexists with other unreduced Fe-Ti-O phases (FeTiO3, TiO2 or pseudobrookite (PSB)/ferro-PSB), which is consistent with the observed reduction degree of < 100%. </p><p>During reduction of both types of pellets, any TTH present is rapidly reduced first. After this step, TTM is then reduced to FeO, with Ti becoming enriched in the remaining unreduced TTM. FeO is further reduced to metallic Fe, which makes up to ~90% reduction degree. Eventually Ti-enrichment of the TTM leads to a change in the reduction pathway and it instead directly converts to metallic Fe and FeTiO3. Above ~90% reduction degree, reduction of the remaining Fe-Ti-O phases occurs (leading to the formation of TiO2 or PSB/ferro-PSB). </p><p>The enrichment of Ti in TTM which accompanies the generation of FeO is substantially different from conventional non-titaniferous ores. This enrichment is confirmed by EDS-maps of the particles and stoichiometric calculations of the molar fraction Ti within the TTM phase. This enrichment effect changes the morphology of FeO in the particles, leading to the formation of FeO channels surrounded by Ti-enriched TTM. </p><p>At the pellet-scale, both types of pellets present a single interface shrinking core phenomenon at higher temperatures. Metallic Fe is generated from pellet surface with a reaction interface moving inwards. However, at lower temperatures this pellet-scale interface becomes less defined in the pellets. Instead, particle-scale reaction fronts are observed. </p><p>A single interface shrinking core model (SCM) is shown to successfully describe the reduction of pellets for reduction degrees < ~90% at all temperatures studied. However, at reduction degrees > ~90% this model fails. This is attributed to the change in reaction mechanism required to reduce the residual Fe-Ti-O phases that remain dispersed throughout the whole pellet at this stage of the reaction. The single interface SCM indicates that the reduction rate of the Ar-sintered pellets is controlled by the interfacial chemical reaction rate. However, two different temperature regimes are identified. Above 1193 K, the activation energy is calculated to be 41 ± 1 kJ/mol, but below 1193 K the calculated activation energy increases to 89 ± 5 kJ/mol. This change in activation energy appears to be associated with the change of the rate-limiting reaction from FeO → metallic Fe to TTM → FeO. By contrast, the pre-oxidised pellets exhibit mixed control at 1043 K, where a role is played by both the interfacial chemical reaction rate and the diffusion rate through the outer product layer. However, at temperatures of 1143 K and above, the pre-oxidised pellets also exhibit interfacial chemical reaction control, with a single activation energy of 31 ± 1 kJ/mol, which again seems to be consistent the rate-limiting reaction being FeO → metallic Fe. </p><p>In summary, the findings in this thesis contribute to understanding of the reduction of NZ ironsand pellets in H2 gas, and establish a kinetic model to describe this process. In the future, this information will be applied to develop a prototype H2-DRI shaft reactor for NZ ironsand pellets. </p>


2021 ◽  
Vol 35 (5) ◽  
pp. 4616-4616
Author(s):  
Florian Wesenauer ◽  
Christian Jordan ◽  
Mario Pichler ◽  
Aron Frei ◽  
Mudassar Azam ◽  
...  

2020 ◽  
Vol 34 (12) ◽  
pp. 16679-16692
Author(s):  
Florian Wesenauer ◽  
Christian Jordan ◽  
Mario Pichler ◽  
Aron Frei ◽  
Mudassar Azam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document