fracture force
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6638
Author(s):  
Tomasz Bulzak

In the process of cross-wedge rolling, axial-symmetric forgings are formed using wedge tools. These tools may be flat- or roll-shaped. This article presents two methods of cross-wedge rolling of rail axles, traditional and multi-wedge, as well as their advantages and disadvantages. Two cross-wedge rolling processes are modelled numerically using Simufact Forming. Numerical results are then verified by experiments performed on a flat wedge rolling mill. Results obtained with the two rolling methods are compared in terms of material fracture, force parameters, effective strain and thermal conditions during rolling. Results show that material fracture poses a serious problem in these rolling processes. It is found that the Cockcroft–Latham ductile fracture criterion does not predict material fracture correctly. Results demonstrate that the fracture of railway axles in cross-wedge rolling can be best predicted by the fracture criteria developed by Ayada, Brozzo, Ko, Rice and Tracey.


Author(s):  
Mayank Kalra ◽  
Robert Bahensky ◽  
Stewart McLachlin ◽  
Duane Cronin ◽  
Naveen Chandrashekar

Abstract Accidental foot injuries including metatarsal fractures commonly result from compressive loading. The ability of personal protective equipment to prevent these traumatic injuries depends on the understanding of metatarsal fracture tolerance. However, the in-situ fracture tolerance of the metatarsals under direct compressive loading to the foot's dorsal surface remains unexplored, even though the metatarsals are the most commonly fractured bones in the foot. The goal of this study was to quantify the in-situ fracture tolerance of the metatarsals under simulated quasi-static compressive loading. Fresh-frozen cadaveric feet (n=10) were mounted into a testing apparatus to replicate a natural stance and loaded at the mid-metatarsals with a cylindrical bar to simulate a crushing-type injury. A 900N compressive force was initially applied, followed by 225N successive load increments. Specimens were examined using X-ray imaging between load increments to assess for the presence of metatarsal fractures. Descriptive statistics were conducted for metatarsal fracture force and deformation. Pearson correlation tests were used to quantify the correlation between fracture force with age and BMI. The force and deformation at fracture were 1861 ± 642 N (mean ± SD) and 22.6 ± 3.4 mm, respectively. Fracture force was correlated with donor BMI (r=0.90). Every fractured specimen experienced a transverse fracture in the second metatarsal. New biomechanical data from this study further quantifies the metatarsal fracture risk under compressive loading and will help to improve the development and testing of improved personal protective equipment for the foot.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 938
Author(s):  
Jun Cao ◽  
Junchao Zhang ◽  
Baoan Wu ◽  
Huiyi Tang ◽  
Changchun Lv ◽  
...  

The performance of Ag-8.5Au-3.5Pd alloy wire after cold deformation and annealing were analyzed by SEM (scanning electron microscope), strength tester and resistivity tester. The processing process and performance change characteristics of Ag-8.5Au-3.5Pd alloy wire were studied. The results show that alloy wire grains gradually form a fibrous structure along with the increase in deformation. The strength of the wire increases with the increase in deformation rate, but the increase trend becomes flat once the deformation rate is higher than 92.78%; the resistivity of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature, reaching minimum (2.395 × 10−8 Ω·m) when the annealing temperature is 500 °C; the strength of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature. When the annealing temperature is 500 °C, the strength and elongation of the φ0.2070 mm Ag-8.5Au-3.5Pd alloy wire are 287 MPa and 25.7%, respectively; the fracture force and elongation of φ0.020 mm Ag-8.5Au-3.5Pd alloy wire are 0.0876 N and 14.8%, respectively. When the annealing temperature is 550 °C, the metal grains begin to grow and the mechanical performance decrease; the φ0.020 mm Ag-8.5Au-3.5Pd alloy wire have good surface quality when the tension range is 2.5–3.0 g.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Cheng-En Hsu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
...  

Abstract Background Metacarpal shaft fractures are a common hand trauma. The current surgical fixation options for such fractures include percutaneous Kirschner wire pinning and nonlocking and locking plate fixation. Although bone plate fixation, compared with Kirschner wire pinning, has superior fixation ability, a consensus has not been reached on whether the bone plate is better placed on the dorsal or lateral side. Objective The purpose of this study was to evaluate the fixation of locking and regular bone plates on the dorsal and lateral sides of a metacarpal shaft fracture. Materials and methods Thirty-five artificial metacarpal bones were used in the experiment. Metacarpal shaft fractures were created using a saw blade, which were then treated with four types of fixation as follows: (1) a locking plate with four locking bicortical screws on the dorsal side (LP_D); (2) a locking plate with four locking bicortical screws on the lateral side (LP_L); (3) a regular plate with four regular bicortical screws on the dorsal side (RP_D); (4) a regular plate with four regular bicortical screws on the lateral side (RP_D); and (5) two K-wires (KWs). All specimens were tested through cantilever bending tests on a material testing system. The maximum fracture force and stiffness of the five fixation types were determined based on the force–displacement data. The maximum fracture force and stiffness of the specimens with metacarpal shaft fractures were first analyzed using one-way analysis of variance and Tukey’s test. Results The maximum fracture force results of the five types of metacarpal shaft fracture were as follows: LP_D group (230.1 ± 22.8 N, mean ± SD) ≅ RP_D group (228.2 ± 13.4 N) > KW group (94.0 ± 17.4 N) > LP_L group (59.0 ± 7.9 N) ≅ RP_L group (44.5 ± 3.4 N). In addition, the stiffness results of the five types of metacarpal shaft fracture were as follows: LP_D group (68.7 ± 14.0 N/mm) > RP_D group (54.9 ± 3.2 N/mm) > KW group (20.7 ± 5.8 N/mm) ≅ LP_L group (10.6 ± 1.7 N/mm) ≅ RP_L group (9.4 ± 1.2 N/mm). Conclusion According to our results, the mechanical strength offered by lateral plate fixation of a metacarpal shaft fracture is so low that even KW fixation can offer relatively superior mechanical strength; this is regardless of whether a locking or nonlocking plate is used for lateral plate fixation. Such fixation can reduce the probability of extensor tendon adhesion. Nevertheless, our results indicated that when lateral plate fixation is used for fixating a metacarpal shaft fracture in a clinical setting, whether the mechanical strength offered by such fixation would be strong enough to support bone union remains questionable.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Qiong Li ◽  
Jürgen Gluch ◽  
Zhongquan Liao ◽  
Juliane Posseckardt ◽  
André Clausner ◽  
...  

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.


2021 ◽  
Vol 9 (2) ◽  
pp. 27-32
Author(s):  
Arun K Ch Sivakala ◽  
Brintha J Jeyaraj ◽  
Murugesan Krishnan ◽  
Muthu K Balasubramanian

2020 ◽  
Vol 274 ◽  
pp. 109651 ◽  
Author(s):  
Bishnu P. Khanal ◽  
Sisay Berhanu Mekonnen ◽  
Moritz Knoche

Prosthesis ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 325-332
Author(s):  
Kelly M. Suralik ◽  
Jie Sun ◽  
Chia-Yu Chen ◽  
Sang J. Lee

There has been an increase in utilizing 3D printers in dental restorations. The purpose of the study is to compare mechanical properties of 3D-printed prostheses to those of self-cured and/or computer-aided design-computer-aided manufacturing (CAD-CAM) restorations. A metal master typodont was prepared for the mandibular left sextant with implant analogs embedded at the first premolar and first molar positions with a missing second premolar. Three-unit provisional fixed dental prosthesis (FDP) was designed utilizing the 3Shape tooth library and forty-five uniform specimens were fabricated with different materials: self-cured poly(methyl methacrylate) (PMMA) (N = 15), milled PMMA CAD-CAM blocks (N = 15) and 3D-printed resin (N = 15). All specimens were tested using an Instron machine at a crosshead speed of 0.5 mm/min by an axial load on the occlusal surface of the second premolar pontic site. Statistical analysis was completed with Shapiro-Wilk, ANOVA and Tukey post-hoc tests. Mean fracture force was 300.61 N, 294.64 N and 408.49 N for self-cured PMMA, milled PMMA and 3D-printed resin, respectively. Mean force at FDP fracture of 3D-printed resin was significantly greater than the mean fracture force of either self-cured (p = 0.016, 95% CI [17.86, 197.91]) or milled (p = 0.010, 95% CI [23.83, 203.88]) PMMA.


Author(s):  
Vaclav Beranek ◽  
Petr Stastny ◽  
Vit Novacek ◽  
Petr Votapek ◽  
Josef Formanek

Athletes of mixed martial arts use a ground and pound strategy with the strikes in the dominant ground position. The aim of this study was to compare the average peak force (Fpeak) among three punches and to estimate the probability of achieving a skull bone fracture force of 5.1 kN for each type of strike in male and female athletes. A total of 60 males and 31 females (26 ± 8 years, 75 ± 20 kg, 177 ± 11 cm) practicing professional self-defense at the advanced and professional levels performed 15 strikes on a force plate. The analyses of 1360 trials showed significant differences among the strikes Fpeak in females (p < 0.01) and males (p < 0.01). Straight punches had lower Fpeak than palm strikes and elbow strikes in both genders, and palm strikes had higher Fpeak than elbow strikes in females. No difference was observed between palm strikes and elbow strikes in males (p = 0.09). The ground and pound strikes resulted in higher impacts than previously reported strikes in the standing position. Male athletes can deliver a Fpeak above 5.1 kN with a probability of 36% with elbow and palm strikes. Such forces can cause head injury; therefore, the use of these strikes in competition should be carefully considered.


2020 ◽  
Vol 8 (4) ◽  
pp. 116
Author(s):  
Pedro Barreiros ◽  
Luís Neves ◽  
Carlos Aroso ◽  
José M. Mendes ◽  
António Sérgio Silva

Micromovements of the implant–abutment connection influence peri-implant bone preservation. This study evaluates and quantifies the maximal torque after a cycle of implant prosthetic screws tightening using original components. A total of 40 samples were tested: Megagen®—Daegu, South Korea; Dentium®—Gangnam-Gu, Seoul, Korea; BIOMET 3i®—West Palm Beach, FL, USA and BTI®—Álava, Spain. Screws from each manufacturer were subjected to maximal stress force until they fractured. The fracture points were recorded and compared among all samples. To compare the mean values of fracture torques, the reference values associated with each brand and the sample results were used in t-tests. ANOVA (analysis of variance) was used to compare the maximal resistance limit between brands, complemented with Tukey’s multiple-comparison test. The maximal considered level of significance was 5%. The average fracture force for the brands was 40.07 Ncm for Megagen®, 53.39 Ncm for Dentium®, 39.74 Ncm for Biomet 3i®, and 68.84 Ncm for BTI®. BTI® screws showed the most resistance to fracture. According to the protocol that was applied, the implant–abutment connection demonstrated good resistance and a precise fit between these interfaces; therefore, in some cases, the presented values showed a lack of quality control and low fracture resistance.


Sign in / Sign up

Export Citation Format

Share Document