scholarly journals Construction of higher-order smooth positons and breather positons via Hirota’s bilinear method

Author(s):  
Zhao Zhang ◽  
Biao Li ◽  
Junchao Chen ◽  
Qi Guo
2021 ◽  
Author(s):  
Zhao Zhang ◽  
Biao Li ◽  
Junchao Chen ◽  
QI GUO

Abstract Based on the Hirota's bilinear method, a more classic limit technique is perfected to obtain second-order smooth positons. Immediately afterwards, we propose an extremely ingenious limit approach in which higher-order smooth positons and breather positons can be quickly derived from N-soliton solution. Under this ingenious technique, the smooth positons and breather positons of the modified Korteweg-de Vries system are quickly and easily derived. Compared with the generalized Darboux transformation, the approach mentioned in this paper has the following advantages and disadvantages: the advantage is that it is simple and fast; the disadvantage is that this method cannot get a concise general mathematical expression of nth-order smooth positons.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850161 ◽  
Author(s):  
Yaqing Liu ◽  
Xiaoyong Wen

In this paper, a generalized (3[Formula: see text]+[Formula: see text]1)-dimensional B-type Kadomtsev–Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.


2017 ◽  
Vol 72 (7) ◽  
pp. 609-615 ◽  
Author(s):  
Yongkang Shi

AbstractGeneral line rogue waves in the Mel’nikov equation are derived via the Hirota bilinear method, which are given in terms of determinants whose matrix elements have plain algebraic expressions. It is shown that fundamental rogue waves are line rogue waves, which arise from the constant background with a line profile and then disappear into the constant background again. By means of the regulation of free parameters, two subclass of nonfundamental rogue waves are generated, which are called as multirogue waves and higher-order rogue waves. The multirogue waves consist of several fundamental line rogue waves, which arise from the constant background and then decay back to the constant background. The higher-order rogue waves start from a localised lump and retreat back to it. The dynamical behaviours of these line rogue waves are demonstrated by the density and the three-dimensional figures.


2002 ◽  
Vol 11 (02) ◽  
pp. 197-204 ◽  
Author(s):  
K. NAKKEERAN

We consider the higher order nonlinear Schrödinger (HNLS) equation, which governs the nonlinear wave propagation in optical fibers with higher order effects. Lax pair associated with the integrable HNLS equation for the pulse propagation in normal dispersion regime of the fiber media is constructed with the help of Ablowitz–Kaup–Newell–Segur method. Using Hirota bilinear method, dark soliton solution is explicitly derived. Similar study is also carried out for simultaneous propagation of N nonlinear pulses in the normal dispersion regime of the fiber system with higher order effects.


2010 ◽  
Vol 19 (01) ◽  
pp. 145-151 ◽  
Author(s):  
ABDUL-MAJID WAZWAZ

In this work, we study a system of coupled modified KdV (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are derived by using the Hirota's bilinear method and the Hietarinta approach. The resonance phenomenon is examined.


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractThe integrability of coupled KdV equations is examined. The simplified form of Hirota’s bilinear method is used to achieve this goal. Multiple-soliton solutions and multiple singular soliton solutions are formally derived for each coupled KdV equation. The resonance phenomenon of each model will be examined.


2014 ◽  
Vol 92 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Sheng Zhang ◽  
Dong Liu

In this paper, Hirota’s bilinear method is extended to construct multisoliton solutions of a (2+1)-dimensional variable-coefficient Toda lattice equation. As a result, new and more general one-soliton, two-soliton, and three-soliton solutions are obtained, from which the uniform formula of the N-soliton solution is derived. It is shown that Hirota’s bilinear method can be used for constructing multisoliton solutions of some other nonlinear differential-difference equations with variable coefficients.


Sign in / Sign up

Export Citation Format

Share Document