airway bifurcation
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

2020 ◽  
Vol 59 (4) ◽  
pp. 651-661
Author(s):  
Árpád Farkas

Abstract Most of the current dosimetry models of inhaled short-lived radon decay products assume uniform activity distributions along the bronchial airways. In reality, however, both deposition and clearance patterns of inhaled radon progenies are highly inhomogeneous. Consequently, a new deposition-clearance model has been developed that accounts for such inhomogeneities and applied together with biophysical models of cell death and cell transformation. The scope of this study was to apply this model which is based on computational fluid and particle dynamics methods, in an effort to reveal the effect of mucociliary clearance on the bronchial distribution of deposited radon progenies. Furthermore, the influence of mucociliary clearance on the spatial distribution of biological damage due to alpha-decay of the deposited radon progenies was also studied. The results obtained demonstrate that both deposition and clearance of inhaled radon progenies are highly non-uniform within a human airway bifurcation unit. Due to the topology of the carinal ridge, a slow clearance zone emerged in this region, which is the location where most of the radio-aerosols deposit. In spite of the slow mucus movement in this zone, the initial degree of inhomogeneity of the activity due to the nonuniform deposition decreased by a factor of about 3 by considering the effect of mucociliary clearance. In the peak of the airway bifurcation, the computed cell death and cell transformation probabilities were lower when considering deposition and clearance simultaneously, compared to the case when only deposition was considered. However, cellular damage remained clustered.


2020 ◽  
Vol 328 ◽  
pp. 01005
Author(s):  
Frantisek Lizal ◽  
Miloslav Belka ◽  
Milan Maly ◽  
Matous Cabalka ◽  
Jan Jedelsky ◽  
...  

The ability to precisely predict the fate of inhaled fibres is important for toxicologists as well as for pharmaceutists struggling to utilize fibres as carriers of a medication. However, the complexity of fibre movement in human airways still represents a significant challenge for programmers of codes for simulation of fibre flow. This conference contribution introduces the theoretical equations of fibre motion which can be used for calculation of the fate of inhaled fibres, and also, in the second part, first results of high-speed camera recorded trajectories of fibres downstream of a realistic human airway bifurcation are presented as an illustration of the real behaviour of fibres in the lungs.


2018 ◽  
Vol 115 (5) ◽  
pp. E974-E981 ◽  
Author(s):  
Benjamin M. Smith ◽  
Hussein Traboulsi ◽  
John H. M. Austin ◽  
Ani Manichaikul ◽  
Eric A. Hoffman ◽  
...  

Susceptibility to chronic obstructive pulmonary disease (COPD) beyond cigarette smoking is incompletely understood, although several genetic variants associated with COPD are known to regulate airway branch development. We demonstrate that in vivo central airway branch variants are present in 26.5% of the general population, are unchanged over 10 y, and exhibit strong familial aggregation. The most common airway branch variant is associated with COPD in two cohorts (n = 5,054), with greater central airway bifurcation density, and with emphysema throughout the lung. The second most common airway branch variant is associated with COPD among smokers, with narrower airway lumens in all lobes, and with genetic polymorphisms within the FGF10 gene. We conclude that central airway branch variation, readily detected by computed tomography, is a biomarker of widely altered lung structure with a genetic basis and represents a COPD susceptibility factor.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Lin Tian ◽  
Goodarz Ahmadi

Recent rapid development of industrial usage of carbon nanotubes (CNTs) has raised health concerns as these engineered elongated particles resemble the appearance of asbestos, which is a well-known inhalation hazard. While CNTs have elongated rod shaped structure similar to asbestos, they are nanosized, and therefore, their motions are strongly affected by Brownian diffusion. The available studies in this area are rather limited and details of the nanofiber dynamics along the transport route are largely unknown. In this study, the CNTs were modeled as elongated ellipsoids and their full motions including the coupled translational and rotational movement in the human tracheobronchial first airway bifurcation were analyzed. Particular attention was given to the effects of the slip-correction and Brownian motion, which are critical to the accuracy of the modeling of motions of nanoscale CNTs in free molecular and transition regimes.


2016 ◽  
Vol 793 ◽  
pp. 1-20 ◽  
Author(s):  
Benjamin L. Vaughan ◽  
James B. Grotberg

Certain medical treatments involve the introduction of exogenous liquids in the lungs. These liquids can form plugs within the airways. The plugs propagate throughout the branching network in the lungs being forced by airflow. They leave a deposited film on the airway walls and split at bifurcations. Understanding the resulting distribution of liquid throughout the lungs is important for the effective administration of the prescribed treatments. In this paper, we investigate numerically the splitting of a liquid plug by a two-dimensional pulmonary bifurcation under the influence of a transverse gravitational field. The splitting is characterized by the splitting ratio, which is the ratio of volume of the liquid plug in the daughter channels and depends on the capillary number and the orientation of the bifurcation plane with respect to a three-dimensional gravitational field. It is observed that gravity induces asymmetry in the splitting, causing the splitting ratio to be reduced. This effect is mitigated as the capillary number is increased. It is also observed that there exists a critical capillary number where the plug will not split and will instead propagate entirely into the gravitationally favoured daughter channel. We also compute the wall stresses on the bifurcation walls and observe the locations where stresses and their gradients are the highest in magnitude.


2012 ◽  
Vol 30 (2) ◽  
pp. 131-156 ◽  
Author(s):  
J. R. Zierenberg ◽  
D. Halpern ◽  
M. Filoche ◽  
B. Sapoval ◽  
J. B. Grotberg

Sign in / Sign up

Export Citation Format

Share Document