airway walls
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 22 (12) ◽  
pp. 6315
Author(s):  
Stanislawa Bazan-Socha ◽  
Bogdan Jakiela ◽  
Joanna Zuk ◽  
Jacek Zarychta ◽  
Jerzy Soja ◽  
...  

Increased airway wall thickness and remodeling of bronchial mucosa are characteristic of asthma and may arise from altered integrin signaling on airway cells. Here, we analyzed the expression of β1-subfamily integrins on blood and airway cells (flow cytometry), inflammatory biomarkers in serum and bronchoalveolar lavage, reticular basement membrane (RBM) thickness and collagen deposits in the mucosa (histology), and airway geometry (CT-imaging) in 92 asthma patients (persistent airflow limitation subtype: n = 47) and 36 controls. Persistent airflow limitation was associated with type-2 inflammation, elevated soluble α2 integrin chain, and changes in the bronchial wall geometry. Both subtypes of asthma showed thicker RBM than control, but collagen deposition and epithelial α1 and α2 integrins staining were similar. Type-I collagen accumulation and RBM thickness were inversely related to the epithelial expression of the α2 integrin chain. Expression of α2β1 integrin on T-cells and eosinophils was not altered in asthma. Collagen I deposits were, however, more abundant in patients with lower α2β1 integrin on blood and airway CD8+ T-cells. Thicker airway walls in CT were associated with lower α2 integrin chain on blood CD4+ T-cells and airway eosinophils. Our data suggest that α2β1 integrin on inflammatory and epithelial cells may protect against airway remodeling advancement in asthma.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-216037
Author(s):  
Vasiliy V Polosukhin ◽  
Sergey S Gutor ◽  
Rui-Hong Du ◽  
Bradley W Richmond ◽  
Pierre P Massion ◽  
...  

BackgroundAlthough a variety of pathological changes have been described in small airways of patients with COPD, the critical anatomic features determining airflow limitation remain incompletely characterised.MethodsWe examined lung tissue specimens from 18 non-smokers without chronic lung disease and 55 former smokers with COPD for pathological features of small airways that could contribute to airflow limitation. Morphometric evaluation was performed for epithelial and subepithelial tissue thickness, collagen and elastin content, luminal mucus and radial alveolar attachments. Immune/inflammatory cells were enumerated in airway walls. Quantitative emphysema scoring was performed on chest CT scans.ResultsSmall airways from patients with COPD showed thickening of epithelial and subepithelial tissue, mucus plugging and reduced collagen density in the airway wall (in severe COPD). In patients with COPD, we also observed a striking loss of alveolar attachments, which are connective tissue septa that insert radially into the small airway adventitia. While each of these parameters correlated with reduced airflow (FEV1), multivariable regression analysis indicated that loss of alveolar attachments was the major determinant of airflow limitation related to small airways. Neutrophilic infiltration of airway walls and collagen degradation in airway adventitia correlated with loss of alveolar attachments. In addition, quantitative analysis of CT scans identified an association between the extent of emphysema and loss of alveolar attachments.ConclusionIn COPD, loss of radial alveolar attachments in small airways is the pathological feature most closely related to airflow limitation. Destruction of alveolar attachments may be mediated by neutrophilic inflammation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Erin Joanne Walker ◽  
Deborah Heydet ◽  
Timothy Veldre ◽  
Reena Ghildyal

AbstractAsthma is the most common chronic lung disease in children and young adults worldwide. Airway remodelling (including increased fibroblasts and myofibroblasts in airway walls due to chronic inflammation) differentiates asthmatic from non-asthmatic airways. The increase in airway fibroblasts and myofibroblasts occurs via epithelial to mesenchymal transition (EMT) where epithelial cells lose their tight junctions and are transdifferentiated to mesenchymal cells, with further increases in myofibroblasts occurring via fibroblast-myofibroblast transition (FMT). Transforming growth factor (TGF)-β is the central EMT- and FMT-inducing cytokine. In this study, we have used next generation sequencing to delineate the changes in the transcriptome induced by TGF-β treatment of WI-38 airway fibroblasts in both the short term and after differentiation into myofibroblasts, to gain an understanding of the contribution of TGF-β induced transdifferentiation to the asthmatic phenotype. The data obtained from RNAseq analysis was confirmed by quantitative PCR (qPCR) and protein expression investigated by western blotting. As expected, we found that genes coding for intermediates in the TGF-β signalling pathways (SMADs) were differentially expressed after TGF-β treatment, SMAD2 being upregulated and SMAD3 being downregulated as expected. Further, genes involved in cytoskeletal pathways (FN1, LAMA, ITGB1) were upregulated in myofibroblasts compared to fibroblasts. Importantly, genes that were previously shown to be changed in asthmatic lungs (ADAMTS1, DSP, TIMPs, MMPs) were similarly differentially expressed in myofibroblasts, strongly suggesting that TGF-β mediated differentiation of fibroblasts to myofibroblasts may underlie important changes in the asthmatic airway. We also identified new intermediates of signalling pathways (PKB, PTEN) that are changed in myofibroblasts compared to fibroblasts. We have found a significant number of genes that are altered after TGF-β induced transdifferentiation of WI-38 fibroblasts into myofibroblasts, many of which were expected or predicted. We also identified novel genes and pathways that were affected after TGF-β treatment, suggesting additional pathways are activated during the transition between fibroblasts and myofibroblasts and may contribute to the asthma phenotype.


2019 ◽  
Vol 54 (3) ◽  
pp. 1802173 ◽  
Author(s):  
Isabelle Dupin ◽  
Matthieu Thumerel ◽  
Elise Maurat ◽  
Florence Coste ◽  
Edmée Eyraud ◽  
...  

The remodelling mechanism and cellular players causing persistent airflow limitation in COPD remain largely elusive. We have recently demonstrated that circulating fibrocytes, a rare population of fibroblast-like cells produced by the bone marrow stroma, are increased in COPD patients during an exacerbation. We aimed to quantify fibrocyte density in situ in bronchial specimens from both control subjects and COPD patients, to define associations with relevant clinical, functional and computed tomography (CT) parameters, and to investigate the effect of the epithelial microenvironment on fibrocyte survival in vitro (“Fibrochir” study).A total of 17 COPD patients and 25 control subjects, all requiring thoracic surgery, were recruited. Using co-immunostaining and image analysis, we identified CD45+ FSP1+ cells as tissue fibrocytes, and quantified their density in distal and proximal bronchial specimens. Fibrocytes, cultured from the blood samples of six COPD patients, were exposed to primary bronchial epithelial cell secretions from control subjects or COPD patients.We demonstrate that fibrocytes are increased in both distal and proximal tissue specimens of COPD patients. The density of fibrocytes is negatively correlated with lung function parameters and positively correlated with bronchial wall thickness as assessed by CT scan. A high density of distal bronchial fibrocytes predicts the presence of COPD with a sensitivity of 83% and a specificity of 70%. Exposure of fibrocytes to COPD epithelial cell supernatant favours cell survival.Our results thus demonstrate an increased density of fibrocytes within the bronchi of COPD patients, which may be promoted by epithelial-derived survival-mediating factors.


2019 ◽  
Vol 872 ◽  
pp. 407-437 ◽  
Author(s):  
M. Muradoglu ◽  
F. Romanò ◽  
H. Fujioka ◽  
J. B. Grotberg

Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied computationally using a front-tracking method. The plug is driven by an applied constant pressure in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier–Stokes equations are solved in the front-tracking framework. The numerical method is first validated for a surfactant-free case and the results are found to be in good agreement with the earlier simulations of Fujioka et al. (Phys. Fluids, vol. 20, 2008, 062104) and Hassan et al. (Intl J. Numer. Meth. Fluids, vol. 67, 2011, pp. 1373–1392). Then extensive simulations are performed to investigate the effects of surfactant on the mechanical stresses that could be injurious to epithelial cells, such as pressure and shear stress. It is found that the liquid plug ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount of surfactant significantly reduces the pressure and shear stress and thus improves cell survivability. However, addition of surfactant also delays the plug rupture and thus airway reopening.


Respirology ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 399-405 ◽  
Author(s):  
Hisashi Tsukada ◽  
Plamena Entcheva-Dimitrov ◽  
Armin Ernst ◽  
Samaan Rafeq ◽  
John H. Keating ◽  
...  

Author(s):  
Kinza Sentissi ◽  
Stephanie Yacoubian

Airflow disruption can be triggered through multiple mechanisms. The obstruction can stem from within the airway lumen, airway walls, or the tissues surrounding it. This section focuses on airflow disruption initiated by bronchospasm, obstructive lung disease, asthma and status asthmaticus. Bronchospasm presents with increased airway resistance secondary to airway hyperreactivity or anaphylaxis. Asthma and chronic obstructive pulmonary disease (COPD) are obstructive and inflammatory lung pathologies. Airflow disruption in asthma is reversible between exacerbations. The airway obstruction in COPD is not fully reversible. Status asthmaticus is the most severe presentation of asthma and can be life threatening. Poorly controlled obstructive lung disease can result in perioperative complications. Patients should therefore be medically optimized before undergoing operative procedures.


2017 ◽  
Vol 43 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Bruno Guedes Baldi ◽  
Carlos Roberto Ribeiro Carvalho ◽  
Olívia Meira Dias ◽  
Edson Marchiori ◽  
Bruno Hochhegger

ABSTRACT Diffuse cystic lung diseases are characterized by cysts in more than one lung lobe, the cysts originating from various mechanisms, including the expansion of the distal airspaces due to airway obstruction, necrosis of the airway walls, and parenchymal destruction. The progression of these diseases is variable. One essential tool in the evaluation of these diseases is HRCT, because it improves the characterization of pulmonary cysts (including their distribution, size, and length) and the evaluation of the regularity of the cyst wall, as well as the identification of associated pulmonary and extrapulmonary lesions. When combined with clinical and laboratory findings, HRCT is often sufficient for the etiological definition of diffuse lung cysts, avoiding the need for lung biopsy. The differential diagnoses of diffuse cystic lung diseases are myriad, including neoplastic, inflammatory, and infectious etiologies. Pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, lymphocytic interstitial pneumonia, and follicular bronchiolitis are the most common diseases that produce this CT pattern. However, new diseases have been included as potential determinants of this pattern.


2016 ◽  
Vol 793 ◽  
pp. 1-20 ◽  
Author(s):  
Benjamin L. Vaughan ◽  
James B. Grotberg

Certain medical treatments involve the introduction of exogenous liquids in the lungs. These liquids can form plugs within the airways. The plugs propagate throughout the branching network in the lungs being forced by airflow. They leave a deposited film on the airway walls and split at bifurcations. Understanding the resulting distribution of liquid throughout the lungs is important for the effective administration of the prescribed treatments. In this paper, we investigate numerically the splitting of a liquid plug by a two-dimensional pulmonary bifurcation under the influence of a transverse gravitational field. The splitting is characterized by the splitting ratio, which is the ratio of volume of the liquid plug in the daughter channels and depends on the capillary number and the orientation of the bifurcation plane with respect to a three-dimensional gravitational field. It is observed that gravity induces asymmetry in the splitting, causing the splitting ratio to be reduced. This effect is mitigated as the capillary number is increased. It is also observed that there exists a critical capillary number where the plug will not split and will instead propagate entirely into the gravitationally favoured daughter channel. We also compute the wall stresses on the bifurcation walls and observe the locations where stresses and their gradients are the highest in magnitude.


2015 ◽  
Vol 12 (111) ◽  
pp. 20150523 ◽  
Author(s):  
Peter S. Stewart ◽  
Oliver E. Jensen

In respiratory distress, lung airways become flooded with liquid and may collapse due to surface-tension forces acting on air–liquid interfaces, inhibiting gas exchange. This paper proposes a mathematical multiscale model for the mechanical ventilation of a network of occluded airways, where air is forced into the network at a fixed tidal volume, allowing investigation of optimal recruitment strategies. The temporal response is derived from mechanistic models of individual airway reopening, incorporating feedback on the airway pressure due to recruitment. The model accounts for stochastic variability in airway diameter and stiffness across and between generations. For weak heterogeneity, the network is completely ventilated via one or more avalanches of recruitment (with airways recruited in quick succession), each characterized by a transient decrease in the airway pressure; avalanches become more erratic for airways that are initially more flooded. However, the time taken for complete ventilation of the network increases significantly as the network becomes more heterogeneous, leading to increased stresses on airway walls. The model predicts that the most peripheral airways are most at risk of ventilation-induced damage. A positive-end-expiratory pressure reduces the total recruitment time but at the cost of larger stresses exerted on airway walls.


Sign in / Sign up

Export Citation Format

Share Document