scholarly journals A New Multidimensional Repulsive Potential Field to Avoid Obstacles by Nonholonomic UAVs in Dynamic Environments

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7495
Author(s):  
Cezary Kownacki ◽  
Leszek Ambroziak

The ability of autonomous flight with obstacle avoidance should be a fundamental feature of all modern unmanned aerial vehicles (UAVs). The complexity and difficulty of such a task, however, significantly increase in cases combining moving obstacles and nonholonomic UAVs. Additionally, since they assume the symmetrical distribution of repulsive forces around obstacles, traditional repulsive potential fields are not well suited for nonholonomic vehicles. The limited maneuverability of these types of UAVs, including fixed-wing aircraft, requires consideration not only of their relative position, but also their speed as well as the direction in which the obstacles are moving. To address this issue, the following work presents a novel multidimensional repulsive potential field dedicated to nonholonomic UAVs. This field generates forces that repulse the UAV not from the obstacle’s geometrical center, but from areas immediately behind and in front of it located along a line defined by the obstacle’s velocity vector. The strength of the repulsive force depends on the UAV’s distance to the line representing the obstacle’s movement direction, distance to the obstacle along that line, and the relative speed between the UAV and the obstacle projected to the line, making the proposed repulsive potential field multidimensional. Numerical simulations presented within the paper prove the effectiveness of the proposed novel repulsive potential field in controlling the flight of nonholonomic UAVs.

2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Johan Hagelbäck ◽  
Stefan J. Johansson

Bots for real-time strategy (RTS) games may be very challenging to implement. A bot controls a number of units that will have to navigate in a partially unknown environment, while at the same time avoid each other, search for enemies, and coordinate attacks to fight them down. Potential fields are a technique originating from the area of robotics where it is used in controlling the navigation of robots in dynamic environments. Although attempts have been made to transfer the technology to the gaming sector, assumed problems with efficiency and high costs for implementation have made the industry reluctant to adopt it. We present a multiagent potential field-based bot architecture that is evaluated in two different real-time strategy game settings and compare them, both in terms of performance, and in terms of softer attributes such as configurability with other state-of-the-art solutions. We show that the solution is a highly configurable bot that can match the performance standards of traditional RTS bots. Furthermore, we show that our approach deals with Fog of War (imperfect information about the opponent units) surprisingly well. We also show that a multiagent potential field-based bot is highly competitive in a resource gathering scenario.


Author(s):  
F. Fahimi ◽  
C. Nataraj ◽  
H. Ashrafiuon

An efficient real time path planning method for groups of mobile robots in dynamic environments is introduced. Harmonic potential functions are utilized along with the panel method known in fluid mechanics. First, a complement to the traditional panel method is introduced to generate a more effective harmonic potential field for obstacle avoidance in dynamically changing environments. Second, a group of mobile robots working in an environment containing stationary and moving obstacles is considered. Each robot is assigned to move from its current position to a goal position. The group is not forced to maintain a formation during the motion. Every robot considers the other robots of the group as moving obstacles and hence the physical dimensions of the robots are also taken into account. The path of each robot is planned based on the changing position of the other robots and the position of stationary and moving obstacles. Finally, the effectiveness of the scheme is shown by modeling groups of an arbitrary number of mobile robots and the theory is validated by several computer simulations and hardware experiments.


2021 ◽  
Vol 13 (6) ◽  
pp. 3194
Author(s):  
Fang Zong ◽  
Meng Zeng ◽  
Yang Cao ◽  
Yixuan Liu

Path planning is one of the most important aspects for ambulance driving. A local dynamic path planning method based on the potential field theory is presented in this paper. The potential field model includes two components—repulsive potential and attractive potential. Repulsive potential includes road potential, lane potential and obstacle potential. Considering the driving distinction between an ambulance and a regular vehicle, especially in congested traffic, an adaptive potential function for a lane line is constructed in association with traffic conditions. The attractive potential is constructed with target potential, lane-velocity potential and tailgating potential. The design of lane-velocity potential is to characterize the influence of velocity on other lanes so as to prevent unnecessary lane-changing behavior for the sake of time-efficiency. The results obtained from simulation demonstrate that the proposed method yields a good performance for ambulance driving in an urban area, which can provide support for designing an ambulance support system for the ambulance personnel and dispatcher.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.


2019 ◽  
Vol 42 (5) ◽  
pp. 942-950
Author(s):  
Kai Chang ◽  
Dailiang Ma ◽  
Xingbin Han ◽  
Ning Liu ◽  
Pengpeng Zhao

This paper presents a formation control method to solve the moving target tracking problem for a swarm of unmanned aerial vehicles (UAVs). The formation is achieved by the artificial potential field with both attractive and repulsive forces, and each UAV in the swarm will be driven into a leader-centered spherical surface. The leader is controlled by the attractive force by the moving target, while the Lyapunov vectors drive the leader UAV to a fly-around circle of the target. Furthermore, the rotational vector-based potential field is applied to achieve the obstacle avoidance of UAVs with smooth trajectories and avoid the local optima problem. The efficiency of the developed control scheme is verified by numerical simulations in four scenarios.


2019 ◽  
Vol 286 (1906) ◽  
pp. 20190865 ◽  
Author(s):  
Hangjian Ling ◽  
Guillam E. Mclvor ◽  
Kasper van der Vaart ◽  
Richard T. Vaughan ◽  
Alex Thornton ◽  
...  

As one of nature's most striking examples of collective behaviour, bird flocks have attracted extensive research. However, we still lack an understanding of the attractive and repulsive forces that govern interactions between individuals within flocks and how these forces influence neighbours' relative positions and ultimately determine the shape of flocks. We address these issues by analysing the three-dimensional movements of wild jackdaws ( Corvus monedula ) in flocks containing 2–338 individuals. We quantify the social interaction forces in large, airborne flocks and find that these forces are highly anisotropic. The long-range attraction in the direction perpendicular to the movement direction is stronger than that along it, and the short-range repulsion is generated mainly by turning rather than changing speed. We explain this phenomenon by considering wingbeat frequency and the change in kinetic and gravitational potential energy during flight, and find that changing the direction of movement is less energetically costly than adjusting speed for birds. Furthermore, our data show that collision avoidance by turning can alter local neighbour distributions and ultimately change the group shape. Our results illustrate the macroscopic consequences of anisotropic interaction forces in bird flocks, and help to draw links between group structure, local interactions and the biophysics of animal locomotion.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Jing Ren ◽  
Kenneth A. McIsaac ◽  
Rajni V. Patel

SUMMARYThis paper is to investigate inherent oscillations problems of Potential Field Methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multirobot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up robot's movement, when compared to the standard gradient approaches.


Sign in / Sign up

Export Citation Format

Share Document