Numerical investigation of conjugate heat transfer on a rotating disk under round liquid jet impingement

2021 ◽  
Vol 170 ◽  
pp. 107097
Author(s):  
Le Jiang ◽  
Yaguo Lyu ◽  
Pengfei Zhu ◽  
Wenjun Gao ◽  
Zhenxia Liu
Author(s):  
Lucian Hanimann ◽  
Luca Mangani ◽  
Ernesto Casartelli ◽  
Elmar Gröschel ◽  
Magnus Fischer

The demand for increased turbomachinery performance, both, towards higher pressures and temperatures, leads to high thermal-loads of specific components and can critically affect mechanical integrity. In the particular case of rotating-disk configurations, like the back-side of wheels or in cavities, a very efficient way for cooling is jet impingement. An example for this situation are high pressure-ratio turbochargers, where cooling of the impeller disk (back wall) is introduced to achieve tolerable thermal loads. From the physical point of view, jet impingement on a rotating wall generates an unsteady heat transfer situation. On the other end, accurate values of time-averaged temperatures would be sufficient for design purposes. In general, obtaining circumferentially time-averaged solutions requires transient analysis of the conjugate heat transfer (CHT) process to account for the mean effect of jet cooling on solids. Such analysis is computationally expensive, due to the difference in information propagation time-scale for the solid and the fluid. In this paper, a new approach to directly compute circumferentially time-averaged (i.e., steady-state) temperature distributions for rotating-disk CHT problems is presented based on an adaption of the well known fluid-fluid mixing plane approach.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Jorge C. Lallave ◽  
Muhammad M. Rahman

Abstract This paper considers the transient conjugate heat transfer characterization of a partially confined liquid jet impinging on a rotating and uniformly heated solid disk of finite thickness and radius. A constant heat flux was imposed at the bottom surface of the solid disk at t=0, and heat transfer was monitored for the entire duration of the transient until the steady state condition was reached. Calculations were done for a number of disk materials using water as the coolant, covering a range of Reynolds numbers (225–900), Ekman numbers (7.08×10−5−∞), nozzle-to-target spacing (β=0.25–1.0), confinement ratios (rp/rd=0.2–0.75), disk thicknesses to nozzle diameter ratios (b/dn=0.25–1.67), and solid to fluid thermal conductivity ratios (36.91–697.56). It was found that a higher Reynolds number decreases the time to achieve the steady state condition and increases the local and average Nusselt number. The duration of the transient increases with the increment of the Ekman number and disk thickness, and the reduction in the thermal diffusivity of the disk material.


Author(s):  
Jorge Lallave ◽  
Muhammad M. Rahman

The aim of this computational study was to characterize the flow structure and convective heat transfer for a free liquid jet impinging on a rotating and uniformly heated solid wafer of finite thickness and radius. The main focus considered was the effect of cooling by adding a secondary rotational flow with jet impingement. The model covers the entire fluid region (impinging jet and flow spreading out over the rotating surface) and the solid disk as a conjugate problem. Calculations were done for various standard microelectronics materials, namely aluminum, copper, silver, Constantan, and silicon; at Reynolds number ranging from 445 to 1800, under a broad rotational rate range from 125 to 6000 rpm, and range of wafer thickness from 0.2 to 2 mm, respectively. The working fluids used for this simulation included water (H2O), ammonia (NH3), flouroinert (FC-77), and (MIL-7808) oil. In the present work only laminar liquid flow was considered for Ekman number range from 5.52 × 10−6 to 2.65 × 10−4. The nozzle to disk radius ratio (rd/dn) of 6.333 was kept constant for this study. Plate materials with higher thermal conductivity maintained a more uniform temperature distribution at the solid-fluid interface. Higher Reynolds numbers increased the Nusselt number and local heat transfer coefficient distributions reducing the wall to fluid temperature difference over the entire interface. In general, the rotational rate increases the local Nusselt number values over the entire solid-fluid interface. However, at high rate of rotation, the local Nusselt number decreases because the fluid tends to separate from the rotating disk surface. It was also found that wafer thickness beyond 1 mm did not change significantly the average solid-fluid dimensionless interface temperature and Nusselt number distributions.


2018 ◽  
Vol 49 (12) ◽  
pp. 1151-1170 ◽  
Author(s):  
Maheandera Prabu Paulraj ◽  
Rajesh Kanna Parthasarathy ◽  
Jan Taler ◽  
Dawid Taler ◽  
Pawel Oclon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document