chromosomal fragile sites
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Sebastian H. N. Munk ◽  
Vasileios Voutsinos ◽  
Vibe H. Oestergaard

Common chromosomal fragile sites (CFSs) are genomic regions prone to form breaks and gaps on metaphase chromosomes during conditions of replication stress. Moreover, CFSs are hotspots for deletions and amplifications in cancer genomes. Fragility at CFSs is caused by transcription of extremely large genes, which contributes to replication problems. These extremely large genes do not encode large proteins, but the extreme sizes of the genes originate from vast introns. Intriguingly, the intron sizes of extremely large genes are conserved between mammals and birds. Here, we have used reverse genetics to address the function and significance of the largest intron in the extremely large gene PRKN, which is highly fragile in our model system. Specifically, we have introduced an 80-kilobase deletion in intron 7 of PRKN. We find that gene expression of PRKN is largely unaffected by this intronic deletion. Strikingly, the intronic deletion, which leads to a 12% reduction of the overall size of the PRKN gene body, results in an almost twofold reduction of the PRKN fragility. Our results stress that while the large intron clearly contributes to the fragility of PRKN, it does not play an important role for PRKN expression. Taken together, our findings further add to the mystery concerning conservation of the seemingly non-functional but troublesome large introns in PRKN.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1743
Author(s):  
Marta Kuchta-Gładysz ◽  
Ewa Wójcik ◽  
Anna Grzesiakowska ◽  
Katarzyna Rymuza ◽  
Olga Szeleszczuk

A cytogenetic assay based on fragile sites (FS) enables the identification of breaks, chromatid gaps, and deletions. In healthy individuals, the number of these instabilities remains low. Genome stability in these species is affected by Robertsonian translocations in the karyotype of the blue fox and by B chromosomes in the silver fox. The aims of the study were to characterise the karyotype of blue foxes, silver foxes, and their hybrids and to identify chromosomal fragile sites used to evaluate genome stability. The diploid number of A chromosomes in blue foxes ranged from 48 to 50, while the number of B chromosomes in silver foxes varied from one to four, with a constant number of A chromosomes (2n = 34). In interspecific hybrids, both types of karyotypic variation were identified, with the diploid number of A chromosomes ranging from 40 to 44 and the number of B chromosomes varying from 0 to 3. The mean frequency of FS in foxes was 4.06 ± 0.19: 4.61 ± 0.37 in blue foxes, 3.46 ± 0.28 in silver foxes, and 4.12 ± 0.22 in hybrids. A relationship was identified between an increased number of A chromosomes in the karyotype of the hybrids and the frequency of chromosomal breaks. The FS assay was used as a biomarker for the evaluation of genomic stability in the animals in the study.


2021 ◽  
Vol 7 (25) ◽  
pp. eabe2846
Author(s):  
Qian Mei ◽  
Devon M. Fitzgerald ◽  
Jingjing Liu ◽  
Jun Xia ◽  
John P. Pribis ◽  
...  

Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.


Author(s):  
Constanze Pentzold ◽  
Miriam Kokal ◽  
Stefan Pentzold ◽  
Anja Weise

AbstractChromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication–transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 580 ◽  
Author(s):  
Vasileios Voutsinos ◽  
Sebastian H. N. Munk ◽  
Vibe H. Oestergaard

In order to pass on an intact copy of the genome during cell division, complete and faithful DNA replication is crucial. Yet, certain areas of the genome are intrinsically challenging to replicate, which manifests as high local mutation propensity. Such regions include trinucleotide repeat sequences, common chromosomal fragile sites (CFSs), and early replicating fragile sites (ERFSs). Despite their genomic instability CFSs are conserved, suggesting that they have a biological function. To shed light on the potential function of CFSs, this review summarizes the similarities and differences of the regions that challenge DNA replication with main focus on CFSs. Moreover, we review the mechanisms that operate when CFSs fail to complete replication before entry into mitosis. Finally, evolutionary perspectives and potential physiological roles of CFSs are discussed with emphasis on their potential role in neurogenesis.


2018 ◽  
Vol 19 (10) ◽  
pp. 3255 ◽  
Author(s):  
Wei-Chung Tsao ◽  
Kristin Eckert

Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Juliana Gonçalves ◽  
Elsa Moreira ◽  
Inês J. Sequeira ◽  
António S. Rodrigues ◽  
José Rueff ◽  
...  

Chromosomal fragile sites (FSs) are loci where gaps and breaks may occur and are preferential integration targets for some viruses, for example, Hepatitis B, Epstein-Barr virus, HPV16, HPV18, and MLV vectors. However, the integration of the human immunodeficiency virus (HIV) in Giemsa bands and in FSs is not yet completely clear. This study aimed to assess the integration preferences of HIV in FSs and in Giemsa bands using anin silicostudy. HIV integration positions from Jurkat cells were used and two nonparametric tests were applied to compare HIV integration in dark versus light bands and in FS versus non-FS (NFSs). The results show that light bands are preferential targets for integration of HIV-1 in Jurkat cells and also that it integrates with equal intensity in FSs and in NFSs. The data indicates that HIV displays different preferences for FSs compared to other viruses. The aim was to develop and apply an approach to predict the conditions and constraints of HIV insertion in the human genome which seems to adequately complement empirical data.


2015 ◽  
Vol 16 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Ryan G. Thys ◽  
Christine E. Lehman ◽  
Levi C. T. Pierce ◽  
Yuh-Hwa Wang

Sign in / Sign up

Export Citation Format

Share Document