Organic synthesis associated with serpentinization and carbonation on early Mars

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 172-177
Author(s):  
A. Steele ◽  
L. G. Benning ◽  
R. Wirth ◽  
A. Schreiber ◽  
T. Araki ◽  
...  

Abiotic formation of organic molecules Mars rovers have found complex organic molecules in the ancient rocks exposed on the planet’s surface and methane in the modern atmosphere. It is unclear what processes produced these organics, with proposals including both biotic and abiotic sources. Steele et al . analyzed the nanoscale mineralogy of the Mars meteorite ALH 84001 and found evidence of organic synthesis driven by serpentinization and carbonation reactions that occurred during the aqueous alteration of basalt rock by hydrothermal fluids. The results demonstrate that abiotic production of organic molecules operated on Mars 4 billion years ago. —KTS

Author(s):  
Tuo Jiang ◽  
Samuele Bordi ◽  
Angus E. McMillan ◽  
Kuang-Yen Chen ◽  
Fumito Saito ◽  
...  

The current laboratory-based practice of organic synthesis renders automation difficult, suffers from safety and environmental hazards, and hampers the implementation of artificial intelligence guided drug discovery. Using a combination of innovative reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions with prepacked capsules in a fully automated fashion. The machine conducts coupling reactions and delivers the purified products with minimal user involvement. Two of the most desirable reaction classes – the synthesis of saturated N-heterocycles and reductive amination – were implemented, along with multi-step sequences that provide drug-like organic molecules in a fully automated manner. We envision that this system will serve as a console for developers to provide synthetic methods as integrated, user-friendly packages for conducting organic synthesis in a safe and convenient fashion.


2019 ◽  
Author(s):  
Tuo Jiang ◽  
Samuele Bordi ◽  
Angus E. McMillan ◽  
Kuang-Yen Chen ◽  
Fumito Saito ◽  
...  

The current laboratory-based practice of organic synthesis renders automation difficult, suffers from safety and environmental hazards, and hampers the implementation of artificial intelligence guided drug discovery. Using a combination of innovative reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions with prepacked capsules in a fully automated fashion. The machine conducts coupling reactions and delivers the purified products with minimal user involvement. Two of the most desirable reaction classes – the synthesis of saturated N-heterocycles and reductive amination – were implemented, along with multi-step sequences that provide drug-like organic molecules in a fully automated manner. We envision that this system will serve as a console for developers to provide synthetic methods as integrated, user-friendly packages for conducting organic synthesis in a safe and convenient fashion.


2021 ◽  
Vol 08 ◽  
Author(s):  
Rammyani Pal ◽  
Chhanda Mukhopadhyay

: Organocatalysis has been established to be a wide-applicable approach from its inception and rediscovery in 2000. Proline was used as a catalyst in aldol condensation and soon after the successful emergence of iminium catalyzed reactions in organic synthesis. The development of new potential catalytic systems is always an essential and uphill task for scientists and researchers. The fundamental organic synthesis majorly deals with metal-based catalysts, whereas there is a constant surge of developing metal-free reaction conditions to make the reactions environmental friendly. For the synthesis of complex organic molecules, reduction and oxidation reactions are always needed, and there are plenty of catalysts available for these reactions. Organocatalysts are also developed and applied for these two elementary reactions. This review focuses on some of the latest developments and applications of organocatalystsin oxidation and reduction reactions in fundamental organic synthesis.


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


2021 ◽  
Author(s):  
Tuo Jiang ◽  
Samuele Bordi ◽  
Angus E. McMillan ◽  
Kuang-Yen Chen ◽  
Fumito Saito ◽  
...  

Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions using prepacked capsules with minimal user involvement.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 163
Author(s):  
Jeanine Rismondo ◽  
Lisa Maria Schulz

ATP-binding cassette (ABC) transporters are usually involved in the translocation of their cognate substrates, which is driven by ATP hydrolysis. Typically, these transporters are required for the import or export of a wide range of substrates such as sugars, ions and complex organic molecules. ABC exporters can also be involved in the export of toxic compounds such as antibiotics. However, recent studies revealed alternative detoxification mechanisms of ABC transporters. For instance, the ABC transporter BceAB of Bacillus subtilis seems to confer resistance to bacitracin via target protection. In addition, several transporters with functions other than substrate export or import have been identified in the past. Here, we provide an overview of recent findings on ABC transporters of the Gram-positive organisms B. subtilis and Listeria monocytogenes with transport or regulatory functions affecting antibiotic resistance, cell wall biosynthesis, cell division and sporulation.


Sign in / Sign up

Export Citation Format

Share Document