scholarly journals Occurrence and diet analysis of sea turtles in Korean shore

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Jihee Kim ◽  
Il-Hun Kim ◽  
Min-Seop Kim ◽  
Hae Rim Lee ◽  
Young Jun Kim ◽  
...  

Abstract Background Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.

2017 ◽  
Vol 98 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
Suzana Machado Guimarães ◽  
Davi Castro Tavares ◽  
Cassiano Monteiro-Neto

The five sea turtle species occurring in Brazilian waters are susceptible to threats, including incidental catches by fisheries. Studies on incidental captures in fishing gears are the main focus of several conservation actions due to high sea turtle fishery mortality worldwide. This study provides the first evaluation of incidental sea turtle catches by industrial bottom trawl fisheries operating in Brazilian waters. Four twin-trawler vessels were monitored between July 2010 and December 2011 by captains who voluntarily completed logbooks. Forty-four turtles were captured during the 1996 tows (8313 fishing hours), resulting in a catch of 5.3 ± 0.8 turtles per 1000 h per unit effort. Captured species included the loggerhead turtle (Caretta caretta, 22 individuals), olive ridley turtles (Lepidochelys olivacea, 21 individuals) and one green turtle (Chelonia mydas). Water depth was the only variable that significantly affected sea turtle captures according to Generalized Linear Models. The capture rates reported in this study ranked sixth in relation to other published studies of similar fisheries occurring worldwide. Considering the importance of this region for sea turtles, the increasing evidence of sea turtle mortality and the goals of the National Action Plan for Conservation of Sea Turtles in Brazil, it is essential to identify the main threats towards these animals and propose mitigating solutions to reduce sea turtle mortality induced by fishing activities. This study provides results that may guide future research and goals in meeting sea turtle conservation strategies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246241
Author(s):  
David P. Robinson ◽  
Kevin Hyland ◽  
Gerhard Beukes ◽  
Abdulkareem Vettan ◽  
Aneeshkumar Mabadikate ◽  
...  

The rehabilitation of wildlife can contribute directly to the conservation of threatened species by helping to maintain wild populations. This study focused on determining the post-rehabilitation survival and spatial ecology of sea turtles and on comparing the movements of individuals with flipper amputations (amputees) to non-amputee animals. Our aims were to assess whether rehabilitated sea turtles survive after release, to compare and contrast the movement characteristics of the different species of sea turtles we tracked, and to examine whether amputees and non-amputees within species behaved similarly post-release. Twenty-six rehabilitated sea turtles from four species, including hawksbill Eretmochelys imbricata (n = 12), loggerhead Caretta caretta (n = 11), green Chelonia mydas (n = 2), and olive ridley Lepidochelys olivacea (n = 1) sea turtles from the United Arab Emirates were fitted with satellite tags before release. Rehabilitation times ranged from 89 to 817 days (mean 353 ± 237 days). Post-release movements and survival were monitored for 8 to 387 days (mean 155 ± 95 days) through satellite tracking. Tag data suggested that three tracked sea turtles died within four days of release, one after 27 days, and one after 192 days from what are thought to be anthropogenic factors unrelated to their pre-rehabilitation ailments. We then compared habitat use and movement characteristics among the different sea turtle species. Although half of all turtles crossed one or more international boundaries, dispersal varied among species. Loggerhead turtles had a high dispersal, with 80% crossing an international boundary, while hawksbill turtles displayed higher post-release residency, with 66% remaining within UAE territorial waters. Amputee turtles moved similarly to non-amputee animals of the same species. Loggerhead turtles travelled faster (mean ± sd = 15.3 ± 8 km/day) than hawksbill turtles (9 ± 7 km/day). Both amputee and non-amputee sea turtles within a species moved similarly. Our tracking results highlight that rehabilitated sea turtles, including amputees, can successfully survive in the wild following release for up to our ~one-year monitoring time therefore supporting the suitability for release of sea turtles that have recovered from major injuries such as amputations. However, more broadly, the high mortality from anthropogenic factors in the Arabian Gulf region is clearly a serious issue and conservation challenge.


2021 ◽  
Vol 7 ◽  
Author(s):  
Margaret M. Lamont ◽  
Darren Johnson

The neritic environment is rich in resources and as such plays a crucial role as foraging habitat for multi-species marine assemblages, including sea turtles. However, this habitat also experiences a wide array of anthropogenic threats. To prioritize conservation funds, targeting areas that support multi-species assemblages is ideal. This is particularly important in the Gulf of Mexico where restoration actions are currently ongoing following the Deepwater Horizon oil spill. To better understand these areas in the Gulf of Mexico, we characterized two multi-species aggregations of sea turtles captured in different neritic habitats. We described species composition and size classes of turtles, and calculated body condition index for 642 individuals of three species captured from 2011 to 2019: 13.6% loggerheads (Caretta caretta), 44.9% Kemp’s ridleys (Lepidochelys kempii) and 41.4% green turtles (Chelonia mydas). Species composition differed between the two sites with more loggerheads captured in seagrass and a greater proportion of green turtles captured in sand bottom. Turtles in sand bottom were smaller and weighed less than those captured in seagrass. Although small and large turtles were captured at both sites, the proportions differed between sites. Body condition index of green turtles was lower in sand habitat than seagrass habitat; there was no difference for Kemp’s ridleys or loggerheads. In general, smaller green turtles had a higher body condition index than larger green turtles. We have identified another habitat type used by juvenile sea turtle species in the northern Gulf of Mexico. In addition, we highlight the importance of habitat selection by immature turtles recruiting from the oceanic to the neritic environment, particularly for green turtles.


2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Caterina Muramoto ◽  
Vinícius Cardoso-Brito ◽  
Ana Cláudia Raposo ◽  
Thais Torres Pires ◽  
Arianne Pontes Oriá

Abstract Background Environmental changes contribute to the development of ophthalmic diseases in sea turtles, but information on their eye biometrics is scarce. The aim of this study was to describe ophthalmic ultrasonographic features of four different sea turtle species; Caretta caretta (Loggerhead turtle; n = 10), Chelonia mydas (Green turtle; n = 8), Eretmochelys imbricata (Hawksbill turtle; n = 8) and Lepidochelys olivacea (Olive ridley; n = 6) under human care. Corneal thickness, scleral ossicle width and thickness, anterior chamber depth, axial length of the lens, vitreous chamber depth and axial globe length were measured by B-mode sonography with a linear transducer. Carapace size and animal weight were recorded. A sonographic description of the eye structures was established. Results The four species presented an ovate eyeball, a relatively thin cornea, and a small-sized lens positioned rostrally in the eye bulb, near the cornea, resulting in a shallow anterior chamber. The scleral ossicles did not prevent the evaluation of intraocular structures, even with a rotated eye or closed eyelids; image formation beyond the ossicles and measurements of all proposed structures were possible. B-mode sonography was easily performed in all animals studied. The sonographic characteristics of the eye were similar among the four species. Since there was a correlation between the size of the eye structures and the size of the individual, especially its carapace size, the differences found between E. imbricata and Caretta caretta are believed to be due to their overall difference in size. Conclusions Sonography is a valuable tool in ophthalmic evaluation of these species. Only minor differences were found between the species in this study, reinforcing their phylogenetic proximity and their similar functions and habitats.


2016 ◽  
Vol 97 (6) ◽  
pp. 1233-1240 ◽  
Author(s):  
Nathan J. Robinson ◽  
Eric A. Lazo-Wasem ◽  
Frank V. Paladino ◽  
John D. Zardus ◽  
Theodora Pinou

Sea turtles host a diverse array of epibionts, yet it is not well understood what factors influence epibiont community composition. To test whether epibiont communities of sea turtles are influenced by the hosts’ nesting or foraging habitats, we characterized the epibiota of leatherback, olive ridley and green turtles nesting at a single location on the Pacific coast of Costa Rica. We also compared the epibiota of these turtles to conspecific populations nesting elsewhere in the East Pacific. If epibiont communities are influenced by nesting habitats, we predicted that sympatrically nesting turtles would have comparable epibiont taxa. Alternatively, if epibiont communities are influenced by foraging habitats, we predicted the diversity of epibiont taxa should reflect the type and diversity of the hosts’ foraging habitats. We identified 18 epibiont taxa from 18 leatherback, 19 olive ridley and six green turtles. Epibiont diversity was low on leatherbacks (four taxa), but higher for olive ridley and green turtles (12 and nine epibiont taxa respectively). The epibiont communities of olive ridley and green turtles were not statistically different, but both were different from leatherbacks. In addition, conspecific sea turtles from other nesting locations hosted more similar epibiont communities than sympatrically nesting, non-conspecifics. We conclude that epibiont diversity of nesting sea turtles is partially linked to the diversity of their foraging habitats. We also conclude that the surface properties of the skin and carapace of these turtles may contribute to the uniqueness of leatherback turtle epibiont communities and the similarities between olive ridley and green turtle epibiont communities.


Author(s):  
A. Ramakrishnan ◽  
M. Palanivelrajan ◽  
D. Sumathi ◽  
K. Senthilkumar

Background: The olive ridley sea turtle also known as the Pacific ridley sea turtle is a medium-sized species of turtle found in warm and tropical waters, primarily in the Pacific and Indian Oceans. Sea Turtles are an integral part of coastal and marine ecosystems, they have also been fundamental to the culture of coastal societies for millennia. But human activities over the past 200 years have massively tipped the scales against the survival of these ancient mariners, despite its conservation status the olive ridley are considered vulnerable. The aim of the study was to collect biochemical data on olive ridley sea turtles while drawing comparisons with previous published data on sea turtles. Methods: This research work was carried out in rescued Olive Ridley Sea Turtles (Lepidochelys olivacea) which were stranded or rescued during various periods of breeding season from September, 2017 to April, 2018 by Trust for Environmental and Education (TREE) foundation, Vettuvankeni, Chennai, Tamil Nadu. The Clinical samples were collected from 7 sea turtles in rescue centers and examined for biochemical parameters analysis. The biochemical parameters measured were Glucose, cholesterol, Total protein, albumin and globulin, Blood Urea Nitrogen (BUN), Creatinine, Alanine Aminotransferase (ALT), Calcium and Phosphorus. The statistical analyses of data were carried out by using student’s t-test. Result: The results of this study were more or less unfailing with previous studies but variations with other studies may result from values depends upon the geospatial distribution such as species, age, sex, season, sample site, nutrition and management condition. The data in this research was more specific to olive ridley sea turtles, indicating need to standardize reference values because of little know data on these turtle species, which are intended for health evaluation for free-ranging and captive/rescued sea turtles.


Author(s):  
A.Y.A. Alkindi ◽  
I.Y. Mahmoud ◽  
J.L. Plude

The aim of this study is to investigate the role of plasma level parameters during nesting activity and provide data potentially useful to future studies on the dynamics of reproductive and stress hormones in the most endangered sea turtle species in the world. Plasma parameters in the sea turtles, olive ridley (Lipodochelys oliveacea) and hawksbill (Eretmochelys imbricata) from Masirah Island, Oman, were analyzed relative to nesting stress. To date, no study has been conducted on plasma parameter levels in sea turtles during nesting. Field observations were conducted under ideal temperature conditions. At the time of sampling, there was no significant difference for cloacal, sand, air or water temperature for the two species. Electrolytes (Cl¯, Ca++, K+, Na+ and Mg++), cholesterol, urea, uric acid and osmolarity were measured during nesting. Both species were observed to spend between 1.5 and 2.00 hours on the nesting grounds. Some had successful oviposition and completed all nesting phases, while others with incomplete nesting phases failed to oviposit their  eggs. Under both conditions, the turtles of both species had an exhaustive and stressful nesting exercise. Plasma parameter values, both intra-specifically and inter-specifically, were not significantly different for oviposited and non-oviposited turtles. This may indicate that both species have the same physiological adjustment relative to plasma parameters whether or not the turtles oviposited their eggs.  


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Larissa Souza Arantes ◽  
Lucas Cabral Lage Ferreira ◽  
Maximilian Driller ◽  
Fernando Pedro Marinho Repinaldo Filho ◽  
Camila Junqueira Mazzoni ◽  
...  

Abstract Hybridization between sea turtle species occurs with particularly high frequency at two adjacent nesting areas in northeastern Brazil. To understand the outcomes of hybridization and their consequences for sea turtle conservation, we need to evaluate the extent of hybridization occurrence and possible deleterious effects in the hybrid progeny. Thus, we investigated the hypothesis of the existence of a new hybrid spot offshore of Brazil’s northeastern coast. The Abrolhos Archipelago is surrounded by the largest and richest coral reefs in the South Atlantic and is known to be a nesting site for loggerhead turtles (Carettacaretta). In this study, we performed a multidisciplinary investigation into levels of hybridization in sea turtles and their reproductive output in the Abrolhos beaches. Genetic data from mitochondrial DNA (mtDNA) and six autosomal markers showed that there are first-generation hybrid females nesting in Abrolhos, resulting from crossings between hawksbill males (Eretmochelysimbricata) and loggerhead females, and backcrossed hatchlings from both parental species. The type and extent of hybridization were characterized using genomic data obtained with the 3RAD method, which confirmed backcrossing between F1 hybrids and loggerhead turtles. The reproductive output data of Abrolhos nests suggests a disadvantage of hybrids when compared to loggerheads. For the first time, we have shown the association between hybridization and low reproductive success, which may represent a threat to sea turtle conservation.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Eric T. Anderson ◽  
Larry J. Minter ◽  
Elsburgh O. Clarke ◽  
Raymond M. Mroch ◽  
Jean F. Beasley ◽  
...  

In mammals, lipemic blood from sampling too soon after an animal feeds can have substantial effects on biochemical values. Plasma biochemical values in reptiles may be affected by species, age, season, and nutritional state. However, fasting status is not routinely considered when sampling reptile blood. In this paper, we evaluated 2-hour postprandial blood collection in two sea turtle species to investigate the effects of feeding on hematological and plasma biochemical values. Feeding had no significant effects on hematological values in either species, nor did it have an effect on plasma biochemistry values in Kemp's ridley sea turtles. In postprandial green turtles, total protein, albumin, ALP, AST, ALT, amylase, and cholesterol increased significantly, and chloride decreased significantly. Although statistically significant changes were observed, the median percent differences between pre- and postprandial values did not exceed 10% for any of these analytes and would not likely alter the clinical interpretation.


2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Josie L. Palmer ◽  
Damla Beton ◽  
Burak A. Çiçek ◽  
Sophie Davey ◽  
Emily M. Duncan ◽  
...  

AbstractDietary studies provide key insights into threats and changes within ecosystems and subsequent impacts on focal species. Diet is particularly challenging to study within marine environments and therefore is often poorly understood. Here, we examined the diet of stranded and bycaught loggerhead (Caretta caretta) and green turtles (Chelonia mydas) in North Cyprus (35.33° N, 33.47° E) between 2011 and 2019. A total of 129 taxa were recorded in the diet of loggerhead turtles (n = 45), which were predominantly carnivorous (on average 72.1% of dietary biomass), foraging on a large variety of invertebrates, macroalgae, seagrasses and bony fish in low frequencies. Despite this opportunistic foraging strategy, one species was particularly dominant, the sponge Chondrosia reniformis (21.5%). Consumption of this sponge decreased with increasing turtle size. A greater degree of herbivory was found in green turtles (n = 40) which predominantly consumed seagrasses and macroalgae (88.8%) with a total of 101 taxa recorded. The most dominant species was a Lessepsian invasive seagrass, Halophila stipulacea (31.1%). This is the highest percentage recorded for this species in green turtle diet in the Mediterranean thus far. With increasing turtle size, the percentage of seagrass consumed increased with a concomitant decrease in macroalgae. Seagrass was consumed year-round. Omnivory occurred in all green turtle size classes but reduced in larger turtles (> 75 cm CCL) suggesting a slow ontogenetic dietary shift. Macroplastic ingestion was more common in green (31.6% of individuals) than loggerhead turtles (5.7%). This study provides the most complete dietary list for marine turtles in the eastern Mediterranean.


Sign in / Sign up

Export Citation Format

Share Document