scholarly journals Hamiltonian kinetic-Hall magnetohydrodynamics with fluid and kinetic ions in the current and pressure coupling schemes

2021 ◽  
Vol 87 (5) ◽  
Author(s):  
D.A. Kaltsas ◽  
G.N. Throumoulopoulos ◽  
P.J. Morrison

We present two generalized hybrid kinetic-Hall magnetohydrodynamics (MHD) models describing the interaction of a two-fluid bulk plasma, which consists of thermal ions and electrons, with energetic, suprathermal ion populations described by Vlasov dynamics. The dynamics of the thermal components are governed by standard fluid equations in the Hall MHD limit with the electron momentum equation providing an Ohm's law with Hall and electron pressure terms involving a gyrotropic electron pressure tensor. The coupling of the bulk, low-energy plasma with the energetic particle dynamics is accomplished through the current density (current coupling scheme; CCS) and the ion pressure tensor appearing in the momentum equation (pressure coupling scheme; PCS) in the first and the second model, respectively. The CCS is a generalization of two well-known models, because in the limit of vanishing energetic and thermal ion densities, we recover the standard Hall MHD and the hybrid kinetic-ions/fluid-electron model, respectively. This provides us with the capability to study in a continuous manner, the global impact of the energetic particles in a regime extending from vanishing to dominant energetic particle densities. The noncanonical Hamiltonian structures of the CCS and PCS, which can be exploited to study equilibrium and stability properties through the energy-Casimir variational principle, are identified. As a first application here, we derive a generalized Hall MHD Grad–Shafranov–Bernoulli system for translationally symmetric equilibria with anisotropic electron pressure and kinetic effects owing to the presence of energetic particles using the PCS.

2021 ◽  
Vol 28 (8) ◽  
pp. 080701
Author(s):  
M. Idouakass ◽  
Y. Todo ◽  
H. Wang ◽  
J. Wang ◽  
R. Seki ◽  
...  

Author(s):  
S. Barboy ◽  
A. Rashkovan ◽  
G. Ziskind

The present study deals with the effects of wall geometry on the fluid flow and heat transfer in a vertical channel with a wavy wall. The waviness is characterized by wave amplitude and period. The wavy wall is heated with a constant heat flux. A detailed parametric investigation of the effect of waviness is performed for different flow conditions. An enhanced version of the turbulence models is required in order to resolve the near-wall region. In particular, a single wall law for the entire wall region can be achieved by blending linear (viscous) and logarithmic (turbulent) laws-of-the-wall. This approach allows the fully turbulent law to be easily modified and extended to take into account other effects such as pressure gradients or variable properties. Second order discretization scheme for momentum equation and turbulence scalar equations was used. SIMPLE pressure-velocity coupling scheme was employed. The results show how the flow and geometry parameters, namely, the Reynolds number and the amplitude and period of waviness, affect such features as the existence of flow separation, its location and size of the recirculation zones. These features determine the temperature distribution on the wavy wall. An attempt is done to assess the effect of flow and geometry parameters quantitatively.


2020 ◽  
Author(s):  
Wei Chu ◽  
Song Xu ◽  
ZhenXia Zhang ◽  
Jianping Huang ◽  
Zhima Zeren ◽  
...  

<p>Based on the observation data collected by the Energetic Particles Detector Package(HEPP) on board CSES satellite during the period of 2018 and 2019.We analyzed the characterizes of pitch angle spectrum of energetic electron precipitated caused by NWC. Our analysis revealed in details the transient properties of the space electrons induced by the man-made VLF wave emitted by the transmitter at NWC.The center location of the NWC electron flux locates in the north hemisphere other than in the south hemisphere during both quiet and disturbance period which is surprising.And the central location of NWC electron belt move westwards during the geomagnetic storm.The pitch angle distributions of the precipitation electron have the maximum flux at about 60-70 degree other than at 90 degree.The pitch angle distributions presented here are examined for evidence of the transportation mechanism especially for the electron loss mechanism.</p><p> </p>


2020 ◽  
Author(s):  
Olga Malandraki ◽  
Olga Khabarova ◽  
Roberto Bruno ◽  
Gary Zank ◽  
Gang Li and the ISSI-405 team

<p>Recent studies of particle acceleration in the heliosphere have revealed a new mechanism that can locally energize particles up to several MeV/nuc. Stream-stream interactions as well as the heliospheric current sheet – stream interactions lead to formation of large magnetic cavities, bordered by strong current sheets (CSs), which in turn produce secondary CSs and dynamical small-scale magnetic islands (SMIs) of ~0.01AU or less owing to magnetic reconnection. It has been shown that particle acceleration or re-acceleration occurs via stochastic magnetic reconnection in dynamical SMIs confined inside magnetic cavities observed at 1 AU. The study links the occurrence of CSs and SMIs with characteristics of intermittent turbulence and observations of energetic particles of keV-MeV/nuc energies at ~5.3 AU. We analyze selected samples of different plasmas observed by Ulysses during a widely discussed event, which was characterized by a series of high-speed streams of various origins that interacted beyond the Earth’s orbit in January 2005. The interactions formed complex conglomerates of merged interplanetary coronal mass ejections, stream/corotating interaction regions and magnetic cavities. We study properties of turbulence and associated structures of various scales. We confirm the importance of intermittent turbulence and magnetic reconnection in modulating solar energetic particle flux and even local particle acceleration. Coherent structures, including CSs and SMIs, play a significant role in the development of secondary stochastic particle acceleration, which changes the observed energetic particle flux time-intensity profiles and increases the final energy level to which energetic particles can be accelerated in the solar wind.</p>


2020 ◽  
Author(s):  
Nathan Schwadron ◽  

<p>NASA’s Parker Solar Probe (PSP) mission recently plunged through the inner heliosphere to perihelia at ~24 million km (~35 solar radii), much closer to the Sun than any prior human made object. Onboard PSP, the Integrated Science Investigation of the Sun (ISʘIS) instrument suite made groundbreaking measurements of solar energetic particles (SEPs). Here we discuss the near-Sun energetic particle radiation environment over PSP’s first two orbits, which reveal where and how energetic particles are energized and transported. We find a great variety of energetic particle events accelerated both locally and remotely. These include co-rotating interaction regions (CIRs), “impulsive” SEP events driven by acceleration near the Sun, and events related to Coronal Mass Ejections (CMEs). These ISʘIS observations made so close to the Sun provide critical information for investigating the near-Sun transport and energization of solar energetic particles that was difficult to resolve from prior observations. We discuss the physics of particle acceleration and transport in the context of various theories and models that have been developed over the past decades. This study marks a major milestone with humanity’s reconnaissance of the near-Sun environment and provides the first direct observations of the energetic particle radiation environment in the region just above the corona.</p>


2010 ◽  
Vol 6 (S274) ◽  
pp. 482-484
Author(s):  
R. Santos-Lima ◽  
E. M. de Gouveia Dal Pino ◽  
A. Lazarian ◽  
G. Kowal ◽  
D. Falceta-Gonçalves

AbstractThe standard magnetohydrodynamic (MHD) description of the plasma in the hot, magnetized gas of the intra-cluster (ICM) medium is not adequate because it is weakly collisional. In such collisionless magnetized gas, the microscopic velocity distribution of the particles is not isotropic, giving rise to kinetic effects on the dynamical scales. These kinetic effects could be important in understanding the turbulence as well as the amplification and maintenance of the magnetic fields in the ICM. It is possible to formulate fluid models for collisonless or weakly collisional gas by introducing modifications in the MHD equations. These models are often referred as kinetic MHD (KMHD). Using a KMHD model based on the CGL-closure, which allows the adiabatic evolution of the two components of the pressure tensor (the parallel and perpendicular components with respect to the local magnetic field), we performed 3D numerical simulations of forced turbulence in order to study the amplification of an initially weak seed magnetic field. We found that the growth rate of the magnetic energy is comparable to that of the ordinary MHD turbulent dynamo, but the magnetic energy saturates in a level smaller than that of the MHD case. We also found that a necessary condition for the dynamo to operate is to impose constraints on the anisotropy of the pressure.


2017 ◽  
Author(s):  
Katharina Meraner ◽  
Hauke Schmidt

Abstract. Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone by up to 34 % between EPP maximum and EPP minimum. Here, we analyze the climate impact of polar mesospheric and polar stratospheric ozone losses due to EPP in the coupled climate model MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of a mesospheric ozone loss during polar night is small. Hence, climate effects of a mesospheric ozone loss due to energetic particles seem unlikely. A stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.


Sign in / Sign up

Export Citation Format

Share Document