wing polymorphism
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings that they obtain. Previously, we have shown qualitative support for this prediction across nine wing-dimorphic fig wasp species. Here I test the quantitative prediction in the fig wasp Pseudidarnes minerva. In addition, some fig wasp species that lack winged males, but have two wingless morphs, show a conditional strategy with morph determination influenced by the number of wasps developing in a patch. I also test for this alternative pattern in the wing-dimorphic P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusion The morph ratio in P. minerva is consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


2021 ◽  
Vol 17 (8) ◽  
pp. 20210069
Author(s):  
Brodie J. Foster ◽  
Graham A. McCulloch ◽  
Marianne F. S. Vogel ◽  
Travis Ingram ◽  
Jonathan M. Waters

Anthropogenic environmental change can underpin major shifts in natural selective regimes, and can thus alter the evolutionary trajectories of wild populations. However, little is known about the evolutionary impacts of deforestation—one of the most pervasive human-driven changes to terrestrial ecosystems globally. Absence of forest cover (i.e. exposure) has been suggested to play a role in selecting for insect flightlessness in montane ecosystems. Here, we capitalize on human-driven variation in alpine treeline elevation in New Zealand to test whether anthropogenic deforestation has caused shifts in the distributions of flight-capable and flightless phenotypes in a wing-polymorphic lineage of stoneflies from the Zelandoperla fenestrata species complex. Transect sampling revealed sharp transitions from flight-capable to flightless populations with increasing elevation. However, these phenotypic transitions were consistently delineated by the elevation of local treelines, rather than by absolute elevation, providing a novel example of human-driven evolution in response to recent deforestation. The inferred rapid shifts to flightlessness in newly deforested regions have implications for the evolution and conservation of invertebrate biodiversity.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009312
Author(s):  
Jin-Li Zhang ◽  
Sheng-Jie Fu ◽  
Sun-Jie Chen ◽  
Hao-Hao Chen ◽  
Yi-Lai Liu ◽  
...  

Wing polymorphism is an evolutionary feature found in a wide variety of insects, which offers a model system for studying the evolutionary significance of dispersal. In the wing-dimorphic planthopper Nilaparvata lugens, the insulin/insulin-like growth factor signaling (IIS) pathway acts as a ‘master signal’ that directs the development of either long-winged (LW) or short-winged (SW) morphs via regulation of the activity of Forkhead transcription factor subgroup O (NlFoxO). However, downstream effectors of the IIS–FoxO signaling cascade that mediate alternative wing morphs are unclear. Here we found that vestigial (Nlvg), a key wing-patterning gene, is selectively and temporally regulated by the IIS–FoxO signaling cascade during the wing-morph decision stage (fifth-instar stage). RNA interference (RNAi)-mediated silencing of Nlfoxo increase Nlvg expression in the fifth-instar stage (the last nymphal stage), thereby inducing LW development. Conversely, silencing of Nlvg can antagonize the effects of IIS activity on LW development, redirecting wing commitment from LW to the morph with intermediate wing size. In vitro and in vivo binding assays indicated that NlFoxO protein may suppress Nlvg expression by directly binding to the first intron region of the Nlvg locus. Our findings provide a first glimpse of the link connecting the IIS pathway to the wing-patterning network on the developmental plasticity of wings in insects, and help us understanding how phenotypic diversity is generated by the modification of a common set of pattern elements.


2020 ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings they obtain. Previously, we have shown qualitative support for this prediction across nine fig wasp species. Here I test the quantitative prediction in a population of the fig wasp Pseudidarnes minerva. In addition, while Hamilton envisaged simple Mendelian strategies, some fig wasp species with two wingless male morphs (but no winged males) show a conditional strategy with morph determination influenced by the number of wasps developing in a patch - I also test for this pattern in P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusions Morph ratios in P. minerva are consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


Zootaxa ◽  
2020 ◽  
Vol 4838 (4) ◽  
pp. 515-524
Author(s):  
RICARDO MARIÑO-PÉREZ ◽  
SALOMÓN SANABRIA-URBÁN ◽  
BERT FOQUET ◽  
MARTINA E. POCCO ◽  
HOJUN SONG

The species Melanotettix dibelonius Bruner, 1904 was previously recorded from Michoacán and Guerrero states in Mexico. This species is characterized by its tegmina, which are always shorter than head and pronotum together and sometimes shorter than the pronotum. After recent field expeditions (2015-2019) and an extensive review of museum specimens from the most important Orthoptera collections in Mexico and USA (291 specimens), we discovered a long-winged form of this species south of its previous known range, which effectively expanded its distribution range into Oaxaca state. We discuss some aspects regarding the patterns of geographic distribution and morphological variation among the long-winged and short-winged morphs. We conduct statistical analyses and observed that on average, the tegmina of long-winged individuals (both females and males) are slightly longer than twice the length of pronotum; whereas in short-winged individuals the tegmina are nearly as long or slightly longer than the length of the pronotum. Moreover, on average, females appear to have longer tegmina than males in both morphotypes. We provide photographic records of both forms live and mounted, the most comprehensive distribution map to date and a discussion of evolutionarily interesting patterns found in this species. 


2020 ◽  
Vol 37 (6) ◽  
pp. 1775-1789 ◽  
Author(s):  
Vlastimil Smýkal ◽  
Martin Pivarči ◽  
Jan Provazník ◽  
Olga Bazalová ◽  
Pavel Jedlička ◽  
...  

Abstract Evidence accumulates that the functional plasticity of insulin and insulin-like growth factor signaling in insects could spring, among others, from the multiplicity of insulin receptors (InRs). Their multiple variants may be implemented in the control of insect polyphenism, such as wing or caste polyphenism. Here, we present a comprehensive phylogenetic analysis of insect InR sequences in 118 species from 23 orders and investigate the role of three InRs identified in the linden bug, Pyrrhocoris apterus, in wing polymorphism control. We identified two gene clusters (Clusters I and II) resulting from an ancestral duplication in a late ancestor of winged insects, which remained conserved in most lineages, only in some of them being subject to further duplications or losses. One remarkable yet neglected feature of InR evolution is the loss of the tyrosine kinase catalytic domain, giving rise to decoys of InR in both clusters. Within the Cluster I, we confirmed the presence of the secreted decoy of insulin receptor in all studied Muscomorpha. More importantly, we described a new tyrosine kinase-less gene (DR2) in the Cluster II, conserved in apical Holometabola for ∼300 My. We differentially silenced the three P. apterus InRs and confirmed their participation in wing polymorphism control. We observed a pattern of Cluster I and Cluster II InRs impact on wing development, which differed from that postulated in planthoppers, suggesting an independent establishment of insulin/insulin-like growth factor signaling control over wing development, leading to idiosyncrasies in the co-option of multiple InRs in polyphenism control in different taxa.


2019 ◽  
Vol 88 (2) ◽  
pp. 137-148
Author(s):  
Anna Liana ◽  
Wioletta Wawer

Abstract A dozen specimens of Eumodicogryllus bordigalensis were found in three localities in Poland as well more than thirty foreign specimens of the species collected in southern Europe, the Caucasus and Mongolia. They are deposited in the collection of the Museum of Zoology PAS. The adult specimens were studied in detail and measured. The indigenous specimens and the majority of the foreign ones proved to be macropterous. The problems of wing polymorphism and the possibilities of migration are discussed.


2019 ◽  
Vol 64 (1) ◽  
pp. 297-314 ◽  
Author(s):  
Chuan-Xi Zhang ◽  
Jennifer A. Brisson ◽  
Hai-Jun Xu

Many insects are capable of developing into either long-winged or short-winged (or wingless) morphs, which enables them to rapidly match heterogeneous environments. Thus, the wing polymorphism is an adaptation at the root of their ecological success. Wing polymorphism is orchestrated at various levels, starting with the insect's perception of environmental cues, then signal transduction and signal execution, and ultimately the transmitting of signals into physiological adaption in accordance with the particular morph produced. Juvenile hormone and ecdysteroid pathways have long been proposed to regulate wing polymorphism in insects, but rigorous experimental evidence is lacking. The breakthrough findings of ecdysone receptor regulation on transgenerational wing dimorphism in the aphid Acyrthosiphon pisum and of insulin signaling in the planthopper Nilaparvata lugens greatly broaden our understanding of wing polymorphism at the molecular level. Recently, the advent of high-throughput sequencing coupled with functional genomics provides powerful genetic tools for future insights into the molecular bases underlying wing polymorphism in insects.


Sign in / Sign up

Export Citation Format

Share Document