border cell migration
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lauren Penfield ◽  
Denise Montell

Cells migrate collectively through confined environments during development and cancer metastasis. While the nucleus, a large and stiff organelle, impedes cell migration between non-deformable pillars in vitro, its function in vivo may vary depending on the microenvironment. Further, it is unknown how nuclei contribute to collective migration in vivo and whether nuclei in different positions within cell collectives experience different forces. Here, we use border cell migration in the fly ovary as an in vivo model to investigate the effects of confined, collective migration on nuclei and the contribution of nuclear lamins to migration. We found severe yet transient nuclear deformations occur, particularly in the leading cell, as border cells squeeze through tiny crevices between germline cells, termed nurse cells. Leading cells extend protrusions between nurse cells, which may pry open space to allow the cluster to advance. Here we report that the leading cell nuclei deformed as they moved into leading protrusions. Then as protrusions widened, the nucleus recovered a more circular shape. These data suggest that lead cell nuclei may help protrusions expand and thereby enlarge the migration path. To test how nuclei might promote or impede border cell migration, we investigated nuclear lamins, proteins that assemble into intermediate filaments and structurally support the nuclear envelope. Depletion of the Drosophila B-type lamin, Lam, from the outer, motile border cells, but not the inner, nonmotile polar cells, impeded border cell migration, whereas perturbations of the A-type lamin, LamC, did not. While wild type border cell clusters typically have one large leading protrusion as they delaminate from the anterior follicular epithelium, clusters depleted of B-type lamin had multiple, short-lived protrusions, resulting in unproductive cluster movement and failure to progress along the migration path. Further, border cell nuclei depleted of B-type lamins were small, formed blebs, and ruptured. Together, these data indicate that B-type lamin is requied for nuclear integrity, which in turn stabilizes the leading protrusion and promotes overall cluster polarization and collective movement through confined spaces.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maureen C Lamb ◽  
Chathuri P Kaluarachchi ◽  
Thiranjeewa I Lansakara ◽  
Samuel Q Mellentine ◽  
Yiling Lan ◽  
...  

A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Hammed Badmos ◽  
Neville Cobbe ◽  
Amy Campbell ◽  
Richard Jackson ◽  
Daimark Bennett

Polarization of the actin cytoskeleton is vital for the collective migration of cells in vivo. During invasive border cell migration in Drosophila, actin polarization is directly controlled by the Hippo signaling complex, which resides at contacts between border cells in the cluster. Here, we identify, in a genetic screen for deubiquitinating enzymes involved in border cell migration, an essential role for nonstop/USP22 in the expression of Hippo pathway components expanded and merlin. Loss of nonstop function consequently leads to a redistribution of F-actin and the polarity determinant Crumbs, loss of polarized actin protrusions, and tumbling of the border cell cluster. Nonstop is a component of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator complex, but SAGA’s histone acetyltransferase module, which does not bind to expanded or merlin, is dispensable for migration. Taken together, our results uncover novel roles for SAGA-independent nonstop/USP22 in collective cell migration, which may help guide studies in other systems where USP22 is necessary for cell motility and invasion.


2021 ◽  
Author(s):  
Maureen C. Lamb ◽  
Chathuri P. Kaluarachchi ◽  
Thiranjeewa I. Lansakara ◽  
Yiling Lan ◽  
Alexei V. Tivanski ◽  
...  

AbstractA key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This new means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


Author(s):  
Haifa Alhadyian ◽  
Dania Shoaib ◽  
Robert E Ward

Abstract Protein components of the invertebrate occluding junction—known as the septate junction (SJ) - are required for morphogenetic developmental events during embryogenesis in Drosophila melanogaster. In order to determine whether SJ proteins are similarly required for morphogenesis during other developmental stages, we investigated the localization and requirement of four representative SJ proteins during oogenesis: Contactin, Macroglobulin complement-related, Neurexin IV, and Coracle. A number of morphogenetic processes occur during oogenesis, including egg elongation, formation of dorsal appendages, and border cell migration. We found that all four SJ proteins are expressed in egg chambers throughout oogenesis, with the highest and most sustained levels in the follicular epithelium (FE). In the FE, SJ proteins localize along the lateral membrane during early and mid-oogenesis, but become enriched in an apical-lateral domain (the presumptive SJ) by stage 10B. SJ protein relocalization requires the expression of other SJ proteins, as well as Rab5 and Rab11 in a manner similar to SJ biogenesis in the embryo. Knocking down the expression of these SJ proteins in follicle cells throughout oogenesis results in egg elongation defects and abnormal dorsal appendages. Similarly, reducing the expression of SJ genes in the border cell cluster results in border cell migration defects. Together, these results demonstrate an essential requirement for SJ genes in morphogenesis during oogenesis, and suggests that SJ proteins may have conserved functions in epithelial morphogenesis across developmental stages. Article Summary: Septate junction (SJ) proteins are essential for forming an occluding junction in epithelial tissues in Drosophila melanogaster, and also for morphogenetic events that occur prior to the formation of the junction during embryogenesis. Here we show that SJ proteins are expressed in the follicular epithelium of egg chambers during oogenesis and are required for morphogenetic events including egg elongation, dorsal appendages formation, and border cell migration. Additionally, the formation of SJs during oogenesis is similar to that in embryonic epithelia.


2021 ◽  
Author(s):  
XIAORAN GUO ◽  
Wei Dai ◽  
Denise Montell

Collective cell migration is critical for normal development, wound healing, and in tumor progression and metastasis. Border cells in the Drosophila ovary provide a genetically tractable model to identify molecular mechanisms that drive this important cell behavior. In an unbiased screen for defects in border cell migration in mosaic clones, we identified a mutation in the catsup gene. Catsup, the Drosophila ortholog of Zip7, is a large, multifunctional, transmembrane protein of the endoplasmic reticulum (ER), which has been reported to negatively regulate catecholamine biosynthesis, to regulate Notch signaling, to function as a zinc transporter, and to limit ER stress. Here we report that catsup knockdown caused ER stress in border cells and that ectopic induction of ER stress was sufficient to block migration. Notch and EGFR trafficking were also disrupted. Wild type Catsup rescued the migration defect but point mutations known to disrupt the zinc ion transport of Zip7 did not. We conclude that migrating cells are particularly susceptible to defects in zinc transport and ER homeostasis.


2020 ◽  
Author(s):  
Haifa Alhadyian ◽  
Dania Shoiab ◽  
Robert E. Ward

AbstractProtein components of the invertebrate occluding junction - known as the septate junction (SJ) - are required for morphogenetic developmental events during embryogenesis in Drosophila melanogaster. In order to determine whether SJ proteins are similarly required for morphogenesis during other developmental stages, we investigated the localization and requirement of four representative SJ proteins during oogenesis: Contactin, Macroglobulin complement-related, Neurexin IV, and Coracle. A number of morphogenetic processes occur during oogenesis, including egg elongation, formation of dorsal appendages, and border cell migration. We found that all four SJ proteins are expressed in the egg throughout oogenesis, with the highest and most sustained levels in the follicular epithelium (FE). In the FE, SJ proteins localize along the lateral membrane during early and mid-oogenesis, but become enriched in an apical-lateral domain (the presumptive SJ) by stage 10b. SJ protein relocalization requires the expression of other SJ proteins, as well as rab5 and rab11 in a manner similar to SJ biogenesis in the embryo. Knocking down the expression of these SJ proteins in follicle cells throughout oogenesis results in egg elongation defects and abnormal dorsal appendages. Similarly, reducing the expression of SJ genes in the border cell cluster results in border cell migration defects. Together, these results demonstrate an essential requirement for SJ genes in morphogenesis during oogenesis, and suggests that SJ proteins may have conserved functions in epithelial morphogenesis across developmental stages.Article SummarySeptate junction (SJ) proteins are essential for forming an occluding junction in epithelial tissues of Drosophila melanogaster. SJ proteins are also required for morphogenetic events during embryogenesis prior to the formation of an occluding junction. To determine if SJ proteins function in morphogenesis at other developmental stages, we examined their function during oogenesis, and found that SJ proteins are expressed in the follicular epithelium of the egg chamber and are required for egg elongation, dorsal appendages formation, and border cell migration. Additionally, we found that the formation of SJs in oogenesis is similar to that in embryonic epithelia.


2020 ◽  
Vol 31 (15) ◽  
pp. 1584-1594 ◽  
Author(s):  
Emily F. Fox ◽  
Maureen C. Lamb ◽  
Samuel Q. Mellentine ◽  
Tina L. Tootle

Prostaglandins regulate the actin bundler Fascin to promote both on-time border cell migration and cluster cohesion. The latter involves regulating integrin-based adhesions.


2020 ◽  
Author(s):  
Hammed Badmos ◽  
Neville Cobbe ◽  
Amy Campbell ◽  
Daimark Bennett

Polarisation of the actin cytoskeleton is vital for the collective migration of cells in vivo. During invasive border cell migration in Drosophila, actin polarisation is directly controlled by Hippo pathway components, which reside at contacts between border cells in the cluster. Here we identify, in a genetic screen for deubiquitinating enzymes involved in border cell migration, an essential role for non-stop/USP22 in the expression of Hippo pathway components expanded and merlin; loss of non-stop function consequently leads to a redistribution of F-actin and the polarity determinant Crumbs, loss of polarised actin protrusions and premature tumbling of the border cell cluster. Non-stop is a component of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator complex, but SAGA’s histone acetyltransferase module, which does not bind to expanded or merlin, is dispensable for migration. Taken together, our results uncover novel roles for SAGA-independent non-stop/USP22 in Hippo-mediated collective cell migration, which may help guide studies in other systems where USP22 is necessary for cell motility and invasion.


2020 ◽  
Author(s):  
Xianping Wang ◽  
Heng Wang ◽  
Lin Liu ◽  
Sheng Li ◽  
Gregory Emery ◽  
...  

SummaryDuring development, cells often undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of about 8 cells called border cells during Drosophila oogenesis. In wild type egg chambers, border cells need to first collectively migrate to the anterior border of oocyte before undergoing lumen formation to form micropyle, the structure that is essential for sperm entry into the oocyte. We show that E75 is required for border cell migration and it antagonizes the activity of DHR3, which is necessary and sufficient for the subsequent lumen formation during micropyle formation. Furthermore, E75’s loss of function or DHR3 overexpression each leads to precocious lumen formation before collective migration, an incorrect temporal order for the two morphogenetic processes. Interestingly, both E75 and DHR3’s levels are simultaneously elevated in response to signaling from the EcR, a steroid hormone receptor that initiates border cell migration. Subsequently, the decrease of E75 levels in response to decreased EcR signaling leads to the de-repression of DHR3’s activity and hence switch-on of lumen formation, contributing to the regulation of time interval between collective migration and micropyle formation.


Sign in / Sign up

Export Citation Format

Share Document