scholarly journals Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cécile Cathalot ◽  
Erwan G. Roussel ◽  
Antoine Perhirin ◽  
Vanessa Creff ◽  
Jean-Pierre Donval ◽  
...  

AbstractCarbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm−2y−1) compared to the surrounding seawater could lead to 0.05 GtCy−1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.

2018 ◽  
Vol 15 (12) ◽  
pp. 3761-3777 ◽  
Author(s):  
Sarah Eggleston ◽  
Eric D. Galbraith

Abstract. The complexity of dissolved gas cycling in the ocean presents a challenge for mechanistic understanding and can hinder model intercomparison. One helpful approach is the conceptualization of dissolved gases as the sum of multiple, strictly defined components. Here we decompose dissolved inorganic carbon (DIC) into four components: saturation (DICsat), disequilibrium (DICdis), carbonate (DICcarb), and soft tissue (DICsoft). The cycling of dissolved oxygen is simpler, but can still be aided by considering O2, O2sat, and O2dis. We explore changes in these components within a large suite of simulations with a complex coupled climate–biogeochemical model, driven by changes in astronomical parameters, ice sheets, and radiative forcing, in order to explore the potential importance of the different components to ocean carbon storage on long timescales. We find that both DICsoft and DICdis vary over a range of 40 µmol kg−1 in response to the climate forcing, equivalent to changes in atmospheric pCO2 on the order of 50 ppm for each. The most extreme values occur at the coldest and intermediate climate states. We also find significant changes in O2 disequilibrium, with large increases under cold climate states. We find that, despite the broad range of climate states represented, changes in global DICsoft can be quantitatively approximated by the product of deep ocean ideal age and the global export production flux. In contrast, global DICdis is dominantly controlled by the fraction of the ocean filled by Antarctic Bottom Water (AABW). Because the AABW fraction and ideal age are inversely correlated among the simulations, DICdis and DICsoft are also inversely correlated, dampening the overall changes in DIC. This inverse correlation could be decoupled if changes in deep ocean mixing were to alter ideal age independently of AABW fraction, or if independent ecosystem changes were to alter export and remineralization, thereby modifying DICsoft. As an example of the latter, we show that iron fertilization causes both DICsoft and DICdis to increase and that the relationship between these two components depends on the climate state. We propose a simple framework to consider the global contribution of DICsoft+DICdis to ocean carbon storage as a function of the surface preformed nitrate and DICdis of dense water formation regions, the global volume fractions ventilated by these regions, and the global nitrate inventory.


2017 ◽  
Author(s):  
Sarah Eggleston ◽  
Eric D. Galbraith

Abstract. Ocean dissolved inorganic carbon (DIC) storage can be conceptualized as the sum of four components: saturation (DICsat), disequilibrium (DICdis), carbonate (DICcarb) and soft tissue (DICsoft). Among these, DICdis and DICsoft have the potential for large changes that are relatively difficult to predict. Here we explore changes in DICsoft and DICdis in a large suite of simulations with a complex coupled climate-biogeochemical model, driven by changes in orbital forcing, ice sheets and the radiative effect of CO2. Both DICdis and DICsoft vary over a range of 40 μmol kg−1 in response to the climate forcing, equivalent to changes in atmospheric CO2 on the order of 50 ppm for each. We find that, despite the broad range of climate states represented, changes in global DICsoft can be well-approximated by the product of deep ocean ideal age and the global export production flux, while global DICdis is dominantly controlled by the fraction of the ocean filled by Antarctic Bottom Water (AABW). Because the AABW fraction and ideal age are inversely correlated between the simulations, DICdis and DICsoft are also inversely correlated. This inverse correlation could be decoupled if changes in deep ocean mixing were to alter ideal age independently of AABW fraction, or if independent ecosystem changes were to alter export and remineralization, thereby modifying DICsoft. As an example of the latter, iron fertilization causes DICsoft to increase, and causes DICdis to also increase by a similar or greater amount, to a degree that depends on climate state. We propose a simple framework to consider the global contribution of DICsoft + DICdis to ocean carbon storage as a function of the surface preformed nitrate and DICdis of dense water formation regions, the global volume fractions ventilated by these regions, and the global nitrate inventory. More extensive sea ice increases DICdis, and when sea ice becomes very extensive it also causes significant O2 disequilibrium, which may have contributed to reconstructions of low O2 in the Southern Ocean during the glacial. Global DICdis reaches a minimum near modern CO2 because the AABW fraction reaches a minimum, which may have contributed to preventing further CO2 rise during interglacial periods.


2009 ◽  
Vol 6 (1) ◽  
pp. 85-102 ◽  
Author(s):  
G. Fischer ◽  
G. Karakaş

Abstract. The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


Author(s):  
Kanae Komaki ◽  
Mitsuru Shimazu ◽  
Shunsuke Kondo ◽  
Yosuke Onishi ◽  
Satoshi Furuta ◽  
...  

Deep ocean mining in a hydrothermal area needs careful environmental impact assessments in terms of preservation and mitigation of biodiversity. The General Environmental Technos Co. Ltd., or KANSO TECHNOS, for short, has participated in environmental impact assessments in hydrothermal areas in the Izu-Ogasawara and the East China Sea areas (Ishida et al., 2011). Through the experience, we suggest a method of using acoustic systems such as acoustic Doppler current profilers (ADCPs) for monitoring of suspended matters and benthos in hydrothermal areas. Thus, we try to do in-situ observations, called Tow-yo (or Towing) observations with ADCPs (Komaki and Ura, 2009; Komaki et al., 2010). This system has a great advantage in enabling the measurement of great environmental factors, echo intensity and current velocity in a large range. To confirm exactly what the substances are and how large they are from the measured echo intensity data, we tried laboratory experiments in water tanks with echo sounders and turbidity sensors. These results will finally be integrated in a simulation model to predict substances from in-situ data in deep water for future monitoring systems.


2006 ◽  
Vol 2 (5) ◽  
pp. 711-743 ◽  
Author(s):  
L. C. Skinner

Abstract. Given the magnitude and dynamism of the deep marine carbon reservoir, it is almost certain that past glacial – interglacial fluctuations in atmospheric CO2 have relied at least in part on changes in the carbon storage capacity of the deep sea. To date, physical ocean circulation mechanisms that have been proposed as viable explanations for glacial – interglacial CO2 change have focussed almost exclusively on dynamical or kinetic processes. Here, a simple mechanism is proposed for increasing the carbon storage capacity of the deep sea that operates via changes in the volume of southern-sourced deep-water filling the ocean basins, as dictated by the hypsometry of the ocean floor. It is proposed that a water-mass that occupies more than the bottom 3 km of the ocean will essentially determine the carbon content of the marine reservoir. Hence by filling this interval with southern-sourced deep-water (enriched in dissolved CO2 due to its particular mode of formation) the amount of carbon sequestered in the deep sea may be greatly increased. A simple box-model is used to test this hypothesis, and to investigate its implications. It is suggested that up to 70% of the observed glacial – interglacial CO2 change might be explained by the replacement of northern-sourced deep-water below 2.5 km water depth by its southern counterpart. Most importantly, it is found that an increase in the volume of southern-sourced deep-water allows glacial CO2 levels to be simulated easily with only modest changes in Southern Ocean biological export or overturning. If incorporated into the list of contributing factors to marine carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacial – interglacial CO2 change.


2007 ◽  
Vol 4 (4) ◽  
pp. 2877-2914 ◽  
Author(s):  
C. D. Nevison ◽  
N. M. Mahowald ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. A three dimensional, time-evolving field of atmospheric potential oxygen (APO ~ O2/N2 + CO2) is estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes are also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The model seasonal cycles in APO agree well with the observed cycles at 13 global monitoring stations, with agreement helped by the inclusion of oceanic CO2 in the APO calculation. The model latitudinal gradient in APO is strongly influenced by seasonal rectifier effects in atmospheric transport, which appear at least partly unrealistic based on comparison to observations. An analysis of the APO vs.~CO2 method for partitioning land and ocean carbon sinks is performed in the controlled context of the MATCH simulation, in which the true surface carbon and oxygen fluxes are known exactly. This analysis suggests uncertainty ranging up to ±0.2 PgC in the inferred sinks due to transport-induced variability. It also shows that interannual variability in oceanic O2 fluxes can cause increasingly large error in the sink partitioning when the method is applied over increasingly short timescales. However, when decadal or longer averages are used, the variability in the oceanic O2 flux is relatively small, allowing carbon sinks to be partitioned to within a standard deviation of 0.1 Pg C/yr of the true values, provided one has an accurate estimate of long-term mean O2 outgassing.


2009 ◽  
Vol 26 (3) ◽  
pp. 556-569 ◽  
Author(s):  
Ananda Pascual ◽  
Christine Boone ◽  
Gilles Larnicol ◽  
Pierre-Yves Le Traon

Abstract The timeliness of satellite altimeter measurements has a significant effect on their value for operational oceanography. In this paper, an Observing System Experiment (OSE) approach is used to assess the quality of real-time altimeter products, a key issue for robust monitoring and forecasting of the ocean state. In addition, the effect of two improved geophysical corrections and the number of missions that are combined in the altimeter products are also analyzed. The improved tidal and atmospheric corrections have a significant effect in coastal areas (0–100 km from the shore), and a comparison with tide gauge observations shows a slightly better agreement with the gridded delayed-time sea level anomalies (SLAs) with two altimeters [Jason-1 and European Remote Sensing Satellite-2 (ERS-2)/Envisat] using the new geophysical corrections (mean square differences in percent of tide gauge variance of 35.3%) than those with four missions [Jason-1, ERS/Envisat, Ocean Topography Experiment (TOPEX)/Poseidoninterlaced, and Geosat Follow-On] but using the old corrections (36.7%). In the deep ocean, however, the correction improvements have little influence. The performance of fast delivery products versus delayed-time data is compared using independent in situ data (tide gauge and drifter data). It clearly highlights the degradation of real-time SLA maps versus the delayed-time SLA maps: four altimeters are needed in real time to get the similar quality performance as two altimeters in delayed time (sea level error misfit around 36%, and zonal and meridional velocity estimation errors of 27% and 33%, respectively). This study proves that the continuous improvement of geophysical corrections is very important, and that it is essential to stay above a minimum threshold of four available altimetric missions to capture the main space and time oceanic scales in fast delivery products.


2021 ◽  
Author(s):  
Anna Denvil-Sommer ◽  
Corinne Le Quéré ◽  
Erik Buitenhuis ◽  
Lionel Guidi ◽  
Jean-Olivier Irisson

<p>A lot of effort has been put in the representation of surface ecosystem processes in global carbon cycle models, in particular through the grouping of organisms into Plankton Functional Types (PFTs) which have specific influences on the carbon cycle. In contrast, the transfer of ecosystem dynamics into carbon export to the deep ocean has received much less attention, so that changes in the representation of the PFTs do not necessarily translate into changes in sinking of particulate matter. Models constrain the air-sea CO<sub>2</sub> flux by drawing down carbon into the ocean interior. This export flux is five times as large as the CO<sub>2</sub> emitted to the atmosphere by human activities. When carbon is transported from the surface to intermediate and deep ocean, more CO<sub>2 </sub>can be absorbed at the surface. Therefore, even small variability in sinking organic carbon fluxes can have a large impact on air-sea CO<sub>2</sub> fluxes, and on the amount of CO<sub>2</sub> emissions that remain in the atmosphere.</p><p>In this work we focus on the representation of organic matter sinking in global biogeochemical models, using the PlankTOM model in its latest version representing 12 PFTs. We develop and test a methodology that will enable the systematic use of new observations to constrain sinking processes in the model. The approach is based on a Neural Network (NN) and is applied to the PlankTOM model output to test its ability to reconstruction small and large particulate organic carbon with a limited number of observations. We test the information content of geographical variables (location, depth, time of year), physical conditions (temperature, mixing depth, nutrients), and ecosystem information (CHL a, PFTs). These predictors are used in the NN to test their influence on the model-generation of organic particles and the robustness of the results. We show preliminary results using the NN approach with real plankton and particle size distribution observations from the Underwater Vision Profiler (UVP) and plankton diversity data from Tara Oceans expeditions and discuss limitations.</p>


2011 ◽  
Vol 7 (3) ◽  
pp. 771-800 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


Sign in / Sign up

Export Citation Format

Share Document