near band edge
Recently Published Documents


TOTAL DOCUMENTS

483
(FIVE YEARS 66)

H-INDEX

38
(FIVE YEARS 4)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Thirumala Rao Gurugubelli ◽  
R. V. S. S. N. Ravikumar ◽  
Ravindranadh Koutavarapu

A simple chemical precipitation route was utilized for the synthesis of ZnO nanoparticles (NPs), CdS NPs and ZnO–CdS nanocomposites (NCs). The synthesized nanostructures were examined for the crystal structure, morphology, optical properties and photodegradation activity of rhodamine B (RhB) dye. The ZnO–CdS NCs showed a mixed phase of hexagonal wurtzite structure for both ZnO NPs and CdS NPs. Pure ZnO NPs and CdS NPs possessed bandgaps of 3.2617 and 2.5261 eV, respectively. On the other hand, the composite nanostructures displayed a more narrow bandgap of 2.9796 eV than pure ZnO NPs. When compared to bare ZnO NPs, the PL intensity of near-band-edge emission at 381 nm was practically suppressed, suggesting a lower rate of photogenerated electron–hole (e−/h+) pairs recombination, resulting in enhanced photocatalytic activity. Under solar light, the composite nanostructures displayed a photodegradation efficiency of 98.16% towards of RhB dye. After four trials, the structural stability of ZnO–CdS NCs was verified.


2021 ◽  
Author(s):  
Husam R. Abed ◽  
Ameer I. Khudadad ◽  
Fadhil Mahmood Oleiwi

Abstract In the present investigation, p-NiO has been deposited on n-Si (100) substrate by the spray pyrolysis method. The effect of the distance between the substrate and the nozzle on the structural, photoluminescence, and detection properties has been well inspected. XRD analysis proved the polycrystalline system with a cubic structure for NiO. The elemental analysis confirmed the existence of Ni, O, and Si materials without any impurities. The FESEM analysis showed nano and micro particles distributed on the Si layer, the micro particles have porous like structures which play a significant role as photons guider. The photoluminescence measurement depicted three main peaks at the UV and visible regions of the electromagnetic spectrum which are related to near band edge emission and defects within the crystal, respectively. I-V characteristics revealed good conductivity under UV illumination, and the highest current was recorded by a sample when the distance between the nozzle and the substrate is 25 cm. The responsivity elucidated a high value at UV region with 6.5 mA/W, and the current-time properties demonstrated good reproducibility, high stability and photoresponse, and rapid response and recovery times of 0.375 and 0.791 s, respectively at a lower bias voltage of 1.5 Volt under UV photons source.


Author(s):  
Bo-Rui Huang ◽  
Kui-Shou You ◽  
Kai-Chao Yang ◽  
Day-Shan Liu

Abstract In this work, an AlN-ZnO/ZnO/AlN-ZnO double heterojunction (DH) structure prepared using the cosputtering technology was deposited onto the p-type GaN epitaxial layer. The indiffusion of the oxygen atoms to the p-GaN epilayer was obstructed as the cosputtered AlN-ZnO film inset between n-ZnO/p-GaN interface. The near-ultraviolet (UV) emission from this ZnO/GaN-based light emitting diode (LED) was greatly improved as compared to an n-type ZnO film directly deposited onto the p-GaN epilayer. Meanwhile, the native defects in the n-ZnO layer associated with the green luminescence was less likely to form while it was sandwiched by the cosputtered AlN-ZnO film. As the thickness of the active n-ZnO layer in the DH structure reached 10 nm, the near-band-edge (NBE) emission became the predominated luminescence over the resulting LED spectrum.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012015
Author(s):  
E Gorokhova ◽  
I Venevtsev ◽  
I Alekseeva ◽  
A Khubetsov ◽  
O Dymshits ◽  
...  

Abstract Zinc oxide optical ceramics with hexagonal structure doped with 0.6 –5.0 wt% Yb were fabricated by uniaxial hot pressing of commercial oxide powders at 1180 °C in vacuum. The ceramics were characterized by X-ray diffraction, SEM, EDX, X-ray and optical spectroscopy. It is shown that Yb3+ ions are distributed between C-type Yb2O3 sesquioxide crystals and ZnO grain boundaries. The Yb3+ doping of ZnO ceramics enhances the near-band-edge emission of zinc oxide. ZnO:Yb optical ceramics are promising for optoelectronic applications.


2021 ◽  
pp. 2150116
Author(s):  
WUTTICHAI SINORNATE ◽  
HIDENORI MIMURA ◽  
WISANU PECHARAPA

In this work, morphological and physical properties of pyramid-like ZnO nanostructures fabricated on Sb-doped ZnO seeding films annealed under different atmospheres are extensively studied. The Sb-doped ZnO seeding films were first prepared by sol–gel spin coating technique onto glass substrate then annealed in nitrogen, air and argon followed by low-temperature hydrothermal process for ZnO nanostructures fabrication. The morphological results exhibit the growth of pyramid-like ZnO nanostructure with increasing density of the ZnO nanostructures. The crystal structure shows pyramid-like ZnO wurtzite hexagonal growth along the c-axis without any impurity phase. The growth of pyramid-like ZnO nanostructures is due to the high growth rate of (002) plane. Photoluminescence spectra exhibit the near-band-edge of all samples while the red emission appears in ZnO nanostructures after the hydrothermal process due to the imperfection in the crystal. The reflectance of ZnO nanostructures covers the visible region with the absorption edge of 375[Formula: see text]nm. The calculation shows the relevant energy band gaps in the range of 3.26–3.28[Formula: see text]eV. The difference in hydrothermally grown ZnO nanostructures is significantly affected by different annealing atmospheres.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1125
Author(s):  
Bui Thi Thu Hien ◽  
Vu Thanh Mai ◽  
Pham Thi Thuy ◽  
Vu Xuan Hoa ◽  
Tran Thi Kim Chi

ZnSe nanoparticles (NPs) were prepared by combining both hydrothermal and mechanical milling methods. Transmission electron microscopy images show that fabricated ZnSe NPs with a sphere-like shape have an average size (d) in the range of 20–100 nm, affected by changing the milling time from 10 to 60 min. All the samples crystalize in zincblende-type structure without impurities, as confirmed by analyzing X-ray diffraction patterns, Raman spectra, and energy-dispersive X-ray spectroscopy. Carefully checking Raman spectra, we have observed the broadening and redshift of vibration modes as decreasing NP size, which are ascribed to extra appearance of disorder and defects. The photoluminescence study has found a blue emission at 462 nm attributed to the excitonic near-band edge and a broad defect-related emission around 520–555 nm. Increasing milling time leads to the decrease in the exciton-emission intensity, while the defect-related emissions increase gradually. Interestingly, as decreasing d, we have observed an improved photodegradation of Rhodamine B under UV irradiation, proving application potentials of ZnSe NPs in photocatalytic activity.


2021 ◽  
Vol 118 ◽  
pp. 111227
Author(s):  
Onyekachi Kalu ◽  
Carlos Rodríguez-Fernández ◽  
J. Cardoso ◽  
Maria R. Correia ◽  
Andrés Cantarero ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rabindra Biswas ◽  
Medha Dandu ◽  
Asish Prosad ◽  
Sarthak Das ◽  
Sruti Menon ◽  
...  

AbstractWe report strong second-harmonic generation (SHG) from 2H polytype of multilayer Tin diselenide (SnSe2) for fundamental excitation close to the indirect band-edge in the absence of excitonic resonances. Comparison of SHG and Raman spectra from exfoliated SnSe2 flakes of different polytypes shows strong (negligible) SHG and Raman Eg mode at 109 cm−1 (119 cm−1), consistent with 2H (1T) polytypes. The difference between the A1g–Eg Raman peak positions is found to exhibit significant thickness dependent for the 1T form, which is found to be absent for the 2H form. The observed thickness dependence of SHG with rapid oscillations in signal strength for small changes in flake thickness are in good agreement with a nonlinear wave propagation model considering nonlinear polarization with alternating sign from each monolayer. The nonlinear optical susceptibility extracted from SHG signal comparison with standard quartz samples for 1040 nm excitation is found to be more than 4-times higher than that at 1550 nm. This enhanced nonlinear response at 1040 nm is attributed to the enhanced nonlinear optical response for fundamental excitation close to the indirect band-edge. We also study SHG from heterostructures of monolayer MoS2/multilayer SnSe2 which allows us to unambiguously compare the nonlinear optical response of SnSe2 with MoS2. We find the SHG signal and any interference effect in the overlap region to be dominated by the SnSe2 layer for the excitation wavelengths considered. The comparison of SHG from SnSe2 and MoS2 underscores that the choice of the 2D material for a particular nonlinear optical application is contextual on the wavelength range of interest and its optical properties at those wavelengths. The present works further highlights the usefulness of near band-edge enhancement of nonlinear processes in emerging 2D materials towards realizing useful nanophotonic devices.


Sign in / Sign up

Export Citation Format

Share Document