An Enhanced INS/GNSS Tightly Coupled Navigation System Using Time-Differenced Carrier Phase Measurement

2020 ◽  
Vol 69 (7) ◽  
pp. 5208-5218 ◽  
Author(s):  
Guangcai Wang ◽  
Xiaosu Xu ◽  
Jian Wang ◽  
Yongyun Zhu
Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3084 ◽  
Author(s):  
Jungbeom Kim ◽  
Younsil Kim ◽  
Junesol Song ◽  
Donguk Kim ◽  
Minhuck Park ◽  
...  

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS. The results of a dynamic simulation and an experiment conducted to verify the efficacy of the proposed system indicate that it can achieve performance improvements of up to 70% and 60%, respectively, compared to the conventional algorithm.


2014 ◽  
Vol 536-537 ◽  
pp. 748-755
Author(s):  
Tong Yue Gao ◽  
Hai Lang Ge

Recently, the SUAV has become the research focus at home and abroad. There is a new aircraft type: double ducted tilting Subminiature UAV system, this paper put forward a new attitude navigation system:AHRS-based low-cost GPS carrier phase orientation Navigation System. AHRS aids GPS fastly fix the attitude.This article proposed application the constraint solving the ambiguity basic model, which is based on the double differential equations of the carrier phase measurement. Then we use baseline length and the inaccurate attitude angle constraint to solver integer ambiguity. By the static experimental results show that this method is fast, effective, the AHRS-GPS system can provide high accuracy navigation for SUAV.


2019 ◽  
Vol 13 ◽  
pp. 174830181983304
Author(s):  
Hangshuai Ma ◽  
Rong Wang ◽  
Zhi Xiong ◽  
Jianye Liu ◽  
Chuanyi Li

The application of Beidou Satellite Navigation System (BDS) is developing rapidly. To satisfy the increasing demand for positioning performance, single-frequency precise point positioning (SFPPP) has been a focus in recent years. By introducing the SFPPP technique into the INS/BDS integrated system, higher navigation accuracy can be obtained. Cycle slip, which is caused by signal blockage during the measurement of the carrier phase, is a challenge for SFPPP application. In the INS/SFPPP-BDS integrated system, cycle slip can cause serious bias in BDS carrier phase measurements. In this paper, a new INS/SFBDS-PPP tightly coupled navigation system and a robust adaptive filtering method are proposed. Using a low-cost single-frequency receiver integrated with INS, an observation model was built based on the pseudo range and carrier phase by PPP preprocessing. The cycle slip was introduced into the state vector to improve the estimation precision. The test statistics, comprising the innovation and its covariance, were used to estimate the time at which cycle slip occurred and its amplitude to compensate for its effect on the observation. Finally, the proposed system model and algorithm are validated by simulation.


2009 ◽  
Vol 59 (5) ◽  
pp. 466-470 ◽  
Author(s):  
Wenrui Jin ◽  
Chuanrun Zhai ◽  
Liduan Wang ◽  
Yanhua Zhang ◽  
Xingqun Zhan

2011 ◽  
Vol 130-134 ◽  
pp. 2890-2893 ◽  
Author(s):  
Xiao Guang Wan ◽  
Xing Qun Zhan

Pseudolites are ground-based transmitters that send global navigation satellite system like signals, such as GPS, GLONASS, or Galileo. As an independent system for indoor positioning, pseudolites technique can be explored for a wide range of positioning and navigation application where the signal of satellite GNSS can’t be received. However, with indoor environment, the positioning method of pseudolite navigation system is not entirely same as GNSS, and there are some challenging issues in research and system design. In this paper, a signal difference carrier phase measurement system with pseudolites is design. Furthermore, two major problems are studied that they are multipath error and linear errors.


2005 ◽  
Vol 59 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Jaegyu Jang ◽  
Changdon Kee

Small Unmanned Aerial Vehicles (UAVs) or inexpensive airplanes, such as a Cessna single engine aircraft, require a navigation system with a cheap, compact and precise sensor. Over the past ten years, GPS receivers have begun to be used as primary or alternative navigation sensors, because their use can significantly reduce the overall system cost. This paper describes a navigation system incorporating a velocity-based attitude estimation system with an attitude determination system using multiple antennae, which was implemented and tested using a UAV. The main objective was to obtain precise attitude information using low cost GPS OEM boards and antennae. Attitude boundaries are derived from the relationship between the body frame and the wind coordinates, which are used to validate the resolved cycle ambiguity in an Euler angle domain. Angular rate based on Doppler measurements was used to exclude the degenerate pseudo-roll angle information during severe uncoordinated flight. Searching for cycle ambiguity at every epoch of the flight showed that the developed system gave reliable cycle integer solutions, although the carrier phase measurement was subject to additional errors, such as multipath, external interference, and phase centre variation. A flight test was performed using a 1/4-scale Piper J3 Cub model, CMC Allstar OEM boards, OEM AT575-70 antennae, and 700 MHz PC104 board.


2019 ◽  
Vol 11 (16) ◽  
pp. 1849 ◽  
Author(s):  
Deokhwa Han ◽  
Donguk Kim ◽  
Junesol Song ◽  
Changdon Kee

Regional augmentation systems for a global navigation satellite system (GNSS) provide an ionospheric map correction to the user in order to remove the ionospheric delay error. Measurements are collected from multiple reference stations to estimate the ionospheric map. During this process, the pseudorange measurement error of a reference station causes an error in the correction, which is more evident at edge areas and causes a large error for low-elevation satellites. In this study, an ionospheric modeling algorithm was developed that uses the carrier phase with the pseudorange to greatly reduce the error. The integer-resolved double-difference carrier phase can be obtained through ambiguity resolution method, and the measurement is directly utilized in ionospheric modeling. The performance of the developed method was tested in simulations and with real data for validation. The results of users at various locations showed that the method effectively improved the accuracy of the correction.


Sign in / Sign up

Export Citation Format

Share Document