hydrazone ligand
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 7 (12) ◽  
pp. 153
Author(s):  
Qianqian Yang ◽  
Xiao-Lei Li ◽  
Jinkui Tang

Two dinuclear complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2) were synthesized using a symmetric hydrazone ligand with the metal ions in an N6 coordination environment. The crystal structures and magnetic properties were determined by single-crystal X-ray diffraction and magnetic susceptibility measurements. The crystal structure study revealed that the spin centers were all in the high-spin state with a distorted octahedron (Oh) geometry. Dynamic magnetic properties measurements revealed that complex Co2 exhibited field-induced single-molecule magnet properties with two-step relaxation in which the fast relaxation path was from QTM and the slow relaxation path from the thermal relaxation under an applied field.


2021 ◽  
Vol 37 (5) ◽  
pp. 1125-1131
Author(s):  
Y.B. Nagamani ◽  
K. Hussain Reddy ◽  
K. Srinivasulu ◽  
D. Dhanalakshmi ◽  
K. Anuja

Metallo-hydrazones having the formula [M(IBAH)2] (where, M = Ni(II), Cu(II) and Zn(II); IBAH = p-Isopropylbenzaldehyde acetoylhydrazone) are prepared and confirmed on the basis of physico-chemical and spectral analyses. Conductivity data revealed that the complexes are non-electrolytes. Metal-DNA interactions are investigated using absorption spectrophotometry. Binding constant (Kb) data revealed that the copper complex interact DNA more strongly than other complexes. Antibacterial activity studies indicated higher activity for complexes than the metal free hydrazone ligand. The copper compound displays higher activity. DNA binding constants are correlated with the activity of metal compounds in this article.


Author(s):  
Patrik Dione de Santana Gois ◽  
Juliana Iris Pereira Maia ◽  
Gustavo Henrique Cicero Masson ◽  
Daniele Maria Martins ◽  
Antonio Eduardo da Hora Machado ◽  
...  

Author(s):  
Pedro H. de O. Santiago ◽  
Eduardo de A. Duarte ◽  
Érica C. M. Nascimento ◽  
João B. L. Martins ◽  
Mariana S. Castro ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 982
Author(s):  
Devaraj Pandiarajan ◽  
Thomas Fox ◽  
Bernhard Spingler

The coordination chemistry of butane-2,3-dione bis (2′-pyridylhydrazone) towards the divalent first-row transition metals zinc and iron has been explored. Depending upon the conditions, the ligand in the six complexes was found to be either neutral, mono, or doubly deprotonated. The zinc(II) and iron(II) complexes were fully characterized by elemental analysis, mass spectrometry, and X-ray diffraction methods.


2021 ◽  
Author(s):  
Hany Youssef ◽  
Yasir Abdulhamed ◽  
Tarek Yousef ◽  
Gaber Abu El-Reash

Abstract In the current work, a ligand N'1-((E)-2-hydroxy-3H-indol-3-ylidene)-N'3-((E)-2-oxoindolin-3-ylidene)malonohydrazide (H4MDI) and its Cr(III) and Ni(II) complexes have been synthesized and characterized by various conventional methods. For evaluating the optimal ligand structure and its complexes, calculations of DFT were applied. Magnetic measurements inherent to their electronic spectra show that both Cr(III) and Ni(II) chelates have octahedron coordination frameworks. On the other hand, the IR spectral data revealed that the ligand behaves as a binegtive hexadentate in [Cr2(H2MDI)(H2O)2Cl4] and as a tetranegative hexadentate in [Ni2(MDI)(H2O)6].4H2O. In addition, the behavior of thermal decomposition for prepared complexes was discussed. Two comparable methods (Coats-Redfern and Horowitz-Metzger) were used to calculate the kinetic parameters of the resulted thermal decomposition stages. Furthermore, the ion-flotation process was used for the separation of Ni(II) from aqueous media via the prepared ligand as a chelating agent and oleic acid as a surfactant. Moreover, the antimicrobial behavior of the synthesized moieties was investigated against various bacterial and fungal strains. H4MDI has the most activity with minimum inhibitory concentration (MIC) of 0.78 µg/mL for both E. coli, and C. Albicans, while Ni(II) complex shows the activity against S. aureus, E. coli, and C. Albicans with MIC of 2.34, 4.68, and 1.17 µg/mL, respectively. Finally, the in-vitro cytotoxic activity of the prepared compounds against hepatocellular carcinoma human tumor cells (HePG-2) has been examined, and revealed that H4MDI and its Ni(II) complex show very strong activity against HePG-2 with IC50 of 9.7 and 7.7 µmol/L, respectively.


Sign in / Sign up

Export Citation Format

Share Document