scholarly journals Musculoskeletal Modeling and Inverse Dynamic Analysis of Precision Grip in the Japanese Macaque

2021 ◽  
Vol 15 ◽  
Author(s):  
Tsuyoshi Saito ◽  
Naomichi Ogihara ◽  
Tomohiko Takei ◽  
Kazuhiko Seki

Toward clarifying the biomechanics and neural mechanisms underlying coordinated control of the complex hand musculoskeletal system, we constructed an anatomically based musculoskeletal model of the Japanese macaque (Macaca fuscata) hand, and then estimated the muscle force of all the hand muscles during a precision grip task using inverse dynamic calculation. The musculoskeletal model was constructed from a computed tomography scan of one adult male macaque cadaver. The hand skeleton was modeled as a chain of rigid links connected by revolute joints. The path of each muscle was defined as a series of points connected by line segments. Using this anatomical model and a model-based matching technique, we constructed 3D hand kinematics during the precision grip task from five simultaneous video recordings. Specifically, we collected electromyographic and kinematic data from one adult male Japanese macaque during the precision grip task and two sequences of the precision grip task were analyzed based on inverse dynamics. Our estimated muscular force patterns were generally in agreement with simultaneously measured electromyographic data. Direct measurement of muscle activations for all the muscles involved in the precision grip task is not feasible, but the present inverse dynamic approach allows estimation for all the hand muscles. Although some methodological limitations certainly exist, the constructed model analysis framework has potential in clarifying the biomechanics and neural control of manual dexterity in macaques and humans.

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Quental Carlos ◽  
Azevedo Margarida ◽  
Ambrósio Jorge ◽  
Gonçalves S. B. ◽  
Folgado João

Abstract Most dynamic simulations are based on inverse dynamics, being the time-dependent physiological nature of the muscle properties rarely considered due to numerical challenges. Since the influence of muscle physiology on the consistency of inverse dynamics simulations remains unclear, the purpose of the present study is to evaluate the computational efficiency and biological validity of four musculotendon models that differ in the simulation of the muscle activation and contraction dynamics. Inverse dynamic analyses are performed using a spatial musculoskeletal model of the upper limb. The muscle force-sharing problem is solved for five repetitions of unloaded and loaded motions of shoulder abduction and shoulder flexion. The performance of the musculotendon models is evaluated by comparing muscle activation predictions with electromyography (EMG) signals, measured synchronously with motion for 11 muscles, and the glenohumeral joint reaction forces estimated numerically with those measured in vivo. The results show similar muscle activations for all muscle models. Overall, high cross-correlations are computed between muscle activations and the EMG signals measured for all movements analyzed, which provides confidence in the results. The glenohumeral joint reaction forces estimated compare well with those measured in vivo, but the influence of the muscle dynamics is found to be negligible. In conclusion, for slow-speed, standard movements of the upper limb, as those studied here, the activation and musculotendon contraction dynamics can be neglected in inverse dynamic analyses without compromising the prediction of muscle and joint reaction forces.


1997 ◽  
Vol 78 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Mary M. Werremeyer ◽  
Kelly J. Cole

Werremeyer, Mary M. and Kelly J. Cole. Wrist action affects precision grip force. J. Neurophysiol. 78: 271–280, 1997. When moving objects with a precision grip, fingertip forces normal to the object surface (grip force) change in parallel with forces tangential to the object (load force). We investigated whether voluntary wrist actions can affect grip force independent of load force, because the extrinsic finger muscles cross the wrist. Grip force increased with wrist angular speed during wrist motion in the horizontal plane, and was much larger than the increased tangential load at the fingertips or the reaction forces from linear acceleration of the test object. During wrist flexion the index finger muscles in the hand and forearm increased myoelectric activity; during wrist extension this myoelectric activity increased little, or decreased for some subjects. The grip force maxima coincided with wrist acceleration maxima, and grip force remained elevated when subjects held the wrist in extreme flexion or extension. Likewise, during isometric wrist actions the grip force increased even though the fingertip loads remained constant. A grip force “pulse” developed that increased with wrist force rate, followed by a static grip force while the wrist force was sustained. Subjects could not suppress the grip force pulse when provided visual feedback of their grip force. We conclude that the extrinsic hand muscles can be recruited to assist the intended wrist action, yielding higher grip-load ratios than those employed with the wrist at rest. This added drive to hand muscles overcame any loss in muscle force while the extrinsic finger flexors shortened during wrist flexion motion. During wrist extension motion grip force increases apparently occurred from eccentric contraction of the extrinsic finger flexors. The coactivation of hand closing muscles with other wrist muscles also may result in part from a general motor facilitation, because grip force increased during isometric knee extension. However, these increases were related weakly to the knee force. The observed muscle coactivation, from all sources, may contribute to grasp stability. For example, when transporting grasped objects, upper limb accelerations simultaneously produce inertial torques at the wrist that must be resisted, and inertial loads at the fingertips from the object that must be offset by increased grip force. The muscle coactivation described here would cause similarly timed pulses in the wrist force and grip force. However, grip-load coupling from this mechanism would not contribute much to grasp stability when small wrist forces are required, such as for slow movements or when the object's total resistive load is small.


Author(s):  
M. Necip Sahinkaya ◽  
Yanzhi Li

Inverse dynamic analysis of a three degree of freedom parallel mechanism driven by three electrical motors is carried out to study the effect of motion speed on the system dynamics and control input requirements. Availability of inverse dynamics models offer many advantages, but controllers based on real-time inverse dynamic simulations are not practical for many applications due to computational limitations. An off-line linearisation of system and error dynamics based on the inverse dynamic analysis is developed. It is shown that accurate linear models can be obtained even at high motion speeds eliminating the need to use computationally intensive inverse dynamics models. A point-to-point motion path for the mechanism platform is formulated by using a third order exponential function. It is shown that the linearised model parameters vary significantly at high motion speeds, hence it is necessary to use adaptive controllers for high performance.


2020 ◽  
Author(s):  
Heiko Stark ◽  
Martin S. Fischer ◽  
Alexander Hunt ◽  
Fletcher Young ◽  
Roger Quinn ◽  
...  

AbstractDogs are an interesting object of investigation because of the wide range of body size, body mass, and physique. In the last several years, the number of clinical and biomechanical studies on dog locomotion has increased. However, the relationship between body structure and joint load during locomotion, as well as between joint load and degenerative diseases of the locomotor system (e.g. dysplasia), are not sufficiently understood. In vivo measurements/records of joint forces and loads or deep/small muscles are complex, invasive, and sometimes ethically questionable. The use of detailed musculoskeletal models may help in filling that knowledge gap. We describe here the methods we used to create a detailed musculoskeletal model with 84 degrees of freedom and 134 muscles. Our model has three key-features: Three-dimensionality, scalability, and modularity. We tested the validity of the model by identifying forelimb muscle synergies of a beagle at walk. We used inverse dynamics and static optimization to estimate muscle activations based on experimental data. We identified three muscle synergy groups by using hierarchical clustering. Predicted activation patterns exhibited good agreement with experimental data for most of the forelimb muscles. We expect that our model will speed up the analysis of how body size, physique, agility, and disease influence joint neuronal control and loading in dog locomotion.


2013 ◽  
Vol 655-657 ◽  
pp. 1378-1382
Author(s):  
Li Zhang ◽  
Li Lei ◽  
Peng Xu

The cut tobacco dryer is one of the most important process equipment in the cigarette production ,which is a typical process involving many factors such as multivariablity, strong coupling, time-varying and large time delay .Based on the identification of inverse dynamics, this paper establishes a process model related to some important parameters of the cut tobacco dryer which lays a foundation for optimizing the control parameters, increasing process efficiency and reducing the cost in the tobacco drying process.


2019 ◽  
Vol 122 (1) ◽  
pp. 398-412 ◽  
Author(s):  
Yasuo Higurashi ◽  
Marc A. Maier ◽  
Katsumi Nakajima ◽  
Kazunori Morita ◽  
Soichiro Fujiki ◽  
...  

Several qualitative features distinguish bipedal from quadrupedal locomotion in mammals. In this study we show quantitative differences between quadrupedal and bipedal gait in the Japanese monkey in terms of gait patterns, trunk/hindlimb kinematics, and electromyographic (EMG) activity, obtained from 3 macaques during treadmill walking. We predicted that as a consequence of an almost upright body axis, bipedal gait would show properties consistent with temporal and spatial optimization countering higher trunk/hindlimb loads and a less stable center of mass (CoM). A comparatively larger step width, an ~9% longer duty cycle, and ~20% increased relative duration of the double-support phase were all in line with such a strategy. Bipedal joint kinematics showed the strongest differences in proximal, and least in distal, hindlimb joint excursions compared with quadrupedal gait. Hindlimb joint coordination (cyclograms) revealed more periods of single-joint rotations during bipedal gait and predominance of proximal joints during single support. The CoM described a symmetrical, quasi-sinusoidal left/right path during bipedal gait, with an alternating shift toward the weight-supporting limb during stance. Trunk/hindlimb EMG activity was nonuniformally increased during bipedal gait, most prominently in proximal antigravity muscles during stance (up to 10-fold). Non-antigravity hindlimb EMG showed altered temporal profiles during liftoff or touchdown. Muscle coactivation was more, but muscle synergies less, frequent during bipedal gait. Together, these results show that behavioral and EMG properties of bipedal vs. quadrupedal gait are quantitatively distinct and suggest that the neural control of bipedal primate locomotion underwent specific adaptations to generate these particular behavioral features to counteract increased load and instability. NEW & NOTEWORTHY Bipedal locomotion imposes particular biomechanical constraints on motor control. In a within-species comparative study, we investigated joint kinematics and electromyographic characteristics of bipedal vs. quadrupedal treadmill locomotion in Japanese macaques. Because these features represent (to a large extent) emergent properties of the underlying neural control, they provide a comparative, behavioral, and neurophysiological framework for understanding the neural system dedicated to bipedal locomotion in this nonhuman primate, which constitutes a critical animal model for human bipedalism.


2008 ◽  
Vol 139 (3) ◽  
pp. 323-338 ◽  
Author(s):  
Naomichi Ogihara ◽  
Haruyuki Makishima ◽  
Shinya Aoi ◽  
Yasuhiro Sugimoto ◽  
Kazuo Tsuchiya ◽  
...  

2016 ◽  
Vol 13 (123) ◽  
pp. 20160675 ◽  
Author(s):  
Sina David ◽  
Johannes Funken ◽  
Wolfgang Potthast ◽  
Alexander Blanke

Insects show a remarkable diversity of muscle configurations, yet the factors leading to this functional diversity are poorly understood. Here, we use musculoskeletal modelling to understand the spatio-temporal activity of an insect muscle in several dragonfly species and to reveal potential mechanical factors leading to a particular muscle configuration. Bite characteristics potentially show systematic signal, but absolute bite force is not correlated with size. Muscle configuration and inverse dynamics show that the wider relative area of muscle attachment and the higher activity of subapical muscle groups are responsible for this high bite force. This wider attachment area is, however, not an evolutionary trend within dragonflies. Our inverse dynamic data, furthermore, show that maximum bite forces most probably do not reflect maximal muscle force production capability in all studied species. The thin head capsule and the attachment areas of muscles most probably limit the maximum force output of the mandibular muscles.


2014 ◽  
Vol 30 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Zachary F. Lerner ◽  
Derek J. Haight ◽  
Matthew S. DeMers ◽  
Wayne J. Board ◽  
Raymond C. Browning

Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak earlystance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM.


Sign in / Sign up

Export Citation Format

Share Document