Plasma dynamics, instabilities and OH generation in a pulsed atmospheric pressure plasma with liquid cathode: a diagnostic study

Author(s):  
Yuanfu Yue ◽  
Vighneswara Siva Santosh Kumar Kondeti ◽  
Nader Sadeghi ◽  
Peter Bruggeman

Abstract While plasma-liquid interactions have been an important focus in the plasma research community, the impact of the strong coupling between plasma and liquid on plasma properties and processes remains not fully understood. In this work, we report on the impact of the applied voltage, pulse width and liquid conductivity on the plasma morphology and the OH generation for a positive pulsed DC atmospheric pressure plasma jet with He-0.1% H2O mixture interacting with a liquid cathode. We adopted diagnostic techniques of fast imaging, 2D laser induced fluorescence (LIF) of OH and Thomson scattering spectroscopy. We show that plasma instabilities and enhanced evaporation occur and have a significant impact on the OH generation. At elevated plasma energies, it is found that the plasma contracts due to a thermal instability through Ohmic heating and the contraction coincides with a depletion in the OH density in the core due to electron impact dissociation. For lower plasma energies, the instability is suppressed/delayed by the equivalent series resistor of the liquid electrode. An estimation of the energy flux from the plasma to the liquid shows that the energy flux of the ions released into the liquid by positive ion hydration is dominant, and significantly larger than the energy needed to evaporate sufficient amount of water to account for the measured H2O concentration increase near the plasma-liquid interface.

2017 ◽  
Vol 24 (5) ◽  
pp. 054005 ◽  
Author(s):  
Simon Hübner ◽  
Joao Santos Sousa ◽  
Joost van der Mullen ◽  
William G Graham

2019 ◽  
Vol 14 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Khaled Lotfy ◽  
Sayed Mohammed Khalil ◽  
Hany Abd El-Raheem

AbstractA helium cold atmospheric pressure plasma jet (HCAPPJ) driven by a commercial neon power supply was designed and utilized for inactivation bacteria. The generated reactive spices by HCAPPJ were investigated by optical emission spectroscopy. The reactive species of OH, OI, OI, N21+, N21+ and He were identified in the UV–Vis wavelength region. The reactive species was not detected between 200 nm and 300 nm, as the flow rate of helium gas increased that led to the plasma temperature reducing to a value near to the room temperature. In this work, we studied the impact of HCAPPJ on Gram-positive and Gram-negative bacteria. The survival amounts of the two types of bacteria were decreased vastly when the rate flow rate was equal to 10 L/min.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Thorben Kewitz ◽  
Christoph Regula ◽  
Maik Fröhlich ◽  
Jörg Ihde ◽  
Holger Kersten

AbstractThe influence of different nozzle head geometries and, therefore, the variation of the excitation and relaxation volume on the energy flux from an atmospheric pressure plasma jet to a surface have been investigated. Measurements have been performed by passive calorimetric probes under variation of the gas flow through the nozzle. The results show that the geometry of the nozzle head has a significant impact on the resulting energy flux. The relaxation volume affects the dependence of the energy flux on the gas flow. While there is no significant influence of the working gas flow on the energy flux without a relaxation volume, utilizing a relaxation volume leads to a decrease of the energy flux with increasing working gas flow. Within the analyzed parameter range, the energy flux reveals for both nozzle heads a linear dependency on the applied primary voltage.


Sign in / Sign up

Export Citation Format

Share Document