scholarly journals Developmental potential of embryonic cells in a nucleocytoplasmic hybrid formed using a goldfish haploid nucleus and loach egg cytoplasm

2010 ◽  
Vol 54 (5) ◽  
pp. 827-835 ◽  
Author(s):  
Takafumi Fujimoto ◽  
Taiju Saito ◽  
Suzu Sakao ◽  
Katsutoshi Arai ◽  
Etsuro Yamaha
Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Zhigalina ◽  
N Skryabin ◽  
O Kanbekova ◽  
V Artyukhova ◽  
A Svetlakov ◽  
...  

Abstract Study question Does the molecular karyotype of the cell-free DNA (cfDNA) from the blastocyst fluid (BF) can predict the efficiency of self-correction of karyotype of preimplantation embryo? Summary answer Detection of aneuploidies in the BF potentially can point out on effective self-correction of blastocyst karyotype and consequently on high developmental potential of mosaic embryos. What is known already Correction of aneuploidies in the preimplantation embryos can be provided by several mechanisms, including apoptosis. The predominant death of aneuploid cells was demonstrated in mouse embryos (Bolton, 2016). A positive correlation was also shown between the concentration of cfDNA from the BF of human blastocyst and the morphology of the embryo, as well as between the activity of caspase–3 and the concentration of cfDNA (Rule, 2018). The incidence of failed amplification after WGA being significantly higher among euploid blastocysts (Magli, 2019). The capacity of abnormal cells extruding into the BF would be related to the embryo development potential (Gianaroli, 2019). Study design, size, duration This is a prospective observational study of thirty-one Day 5 human blastocysts. Cryopreserved blastocysts were received after treatment cycles at the IVF Center with informed consent obtained from couples. The average age of 15 women was 32.25±5 years. The morphological characteristics of blastocysts were estimated in accordance with the Gardner classification (Gardner, Schoolcraft, 1999). The procedure of BF aspiration and trophectoderm (TE) and ICM cells separation of the blastocysts was previously described (Tsuiko, 2018). Participants/materials, setting, methods WGA was performed by PicoPLEX kit (Rubicon Genomics, USA) or REPLI-g Mini kit (Qiagen) according to manufacturer’s protocols. The DNA of the BF, ICM and TE were analyzed separately using cCGH, aCGH and NGS. SurePrint G3 Human CGH Microarrays (8x60K, Agilent Technologies) were used according to the manufacturer’s recommendations. Image analysis was done using ISIS (v.5.5) (Metasystems) and Agilent CytoGenomics Software (v.3). VeriSeq™ PGS Kit - MiSeq® System (Illumina) was used for NGS. Main results and the role of chance Molecular karyotypes of all three samples - BF, ICM and TE, were obtained for 23 (74.2%) blastocysts. A correlation between the woman’s age and the number of aneuploidies in cfDNA (p = 0.0009) was found. A positive correlation may indicate that the number of aneuploidies in the embryonic cells increases with the age of a woman, however, the embryonic karyotype undergoes self-correcting through the elimination of aneuploid cells. It was noted that well-developing blastocysts (groups 4–5, according to Gardner’s classification) had fewer aneuploidies in ICM (p = 0.0141) and TE (p = 0.0436). In contrast, there was a tendency to an increase in the number of aneuploidies in the BF during blastocysts transition from stage 3 to 5 (p = 0.3542). We assessed the relationship between the number of aneuploidies in groups of blastocysts with different characteristics of ICM (groups “A” and “B” according to Gardner’s classification). These groups significantly differ in the number of aneuploidies in cfDNA (p = 0.0352), although the statistically significant differences between the number of aneuploidies in ICM (p = 0.5992) and in TE (p = 0.5934) was not detected. Thus, higher-quality embryos in terms of ICM morphology contain more abnormalities in the BF, since in this group the elimination of aneuploid cells is more efficient. Limitations, reasons for caution The number of embryos is limited in this study. More comprehensive studies are required to confirm the observed tendency. Wider implications of the findings: Aneuploid cells elimination can be a cause of increasing cfDNA concentration in the BF, which may be a marker of the viability of mosaic embryos when it is necessary to decide on mosaic embryo transfer. This study was supported by the RFBR (15–04–08265) and by the RSF (20–74–00064). Trial registration number Not applicable


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 79-96
Author(s):  
Joanne T. Fujii ◽  
Gail R. Martin

Embryonal carcinoma cells were aggregated with cleavage stage mouse embryos, cultured briefly, and transferred as morulae to the uteri of pseudopregnant females. When midgestation foetuses were examined, many were morphologically abnormal. The severity of this abnormal development was correlated with the extent of contribution by embryonal carcinoma cells to the foetuses as indicated by GPI (glucose phosphate isomerase) analysis. This was true for all three of the cell lines studied, NG-2, PSA-1, and LT1-2D. The clear correlation between increasingly abnormal development and more extensive participation by the embryonal carcinoma cells was not observed in control experiments in which embryos of different stages of development were aggregated together. The data therefore suggest that the embryonal carcinoma cells studied here are unable to support normal development in the absence of a substantial number of host embryonic cells. It remains unclear whether this is a consequence of the karyotypic abnormalities of the cells tested, or whether it reflects a characteristic limitation in the ability of embryonal carcinoma cells to independently direct normal development. When aggregates were allowed to develop to term and the extent of chimaerism was examined in the live-born animals, it was found to be sporadic and limited. This is consistent with the results indicating that large contributions by embryonal carcinoma cells are not compatible with normal development at midgestation. The chimaerism observed in the live-born animals was comparable in both frequency and in tissue distribution to that generally obtained in other studies using either the aggregation or blastocyst injection techniques.


1989 ◽  
Vol 27 ◽  
pp. 143
Author(s):  
Lu De-yu ◽  
Tu Miao ◽  
Shen Sangbin ◽  
Zou Xiangong ◽  
Huang Guoping

Studies of the role of cell lineage in development began in the latter part of the 19th century, fell into decline in the early part of the 20th, and were revived about 20 years ago. This recent revival was accompanied by the introduction of new and powerful analytical techniques. Concepts of importance for cell lineage studies include the principal division modes by which a cell may give rise to its descendant clone (proliferative, stem cell and diversifying); developmental determinacy , or indeterminacy , which refer to the degree to which the normal cleavage pattern of the early embryo and the developmental fate of its individual cells is, or is not, the same in specimen after specimen; commitment , which refers to the restriction of the developmental potential of a pluripotent embryonic cell; and equivalence group , which refers to two or more equivalently pluripotent cell clones that normally take on different fates but of which under abnormal conditions one clone can take on the fate of another. Cell lineage can be inferred to have a causative role in developmental cell fate in embryos in which induced changes in cell division patterns lead to changes in cell fate. Moreover, such a causative role of cell lineage is suggested by cases where homologous cell types characteristic of a symmetrical and longitudinally metameric body plan arise via homologous cell lineages. The developmental pathways of commitment to particular cell fates proceed according to a mixed typologic and topographic hierarchy, which appears to reflect an evolutionary compromise between maximizing the ease of ordering the spatial distribution of the determinants of commitment and minimizing the need for migration of differentially committed embryonic cells. Comparison of the developmental cell lineages in leeches and insects indicates that the early course of embryogenesis is radically different in these phyletically related taxa. This evolutionary divergence of the course of early embryogenesis appears to be attributable to an increasing prevalence of polyclonal rather than monoclonal commitment in the phylogenetic line leading from an annelid-like ancestor to insects.


Reproduction ◽  
2013 ◽  
Vol 145 (3) ◽  
pp. R65-R80 ◽  
Author(s):  
Néstor Saiz ◽  
Berenika Plusa

During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.


1998 ◽  
Vol 10 (8) ◽  
pp. 633 ◽  
Author(s):  
Megan Munsie ◽  
Teija Peura ◽  
Anna Michalska ◽  
Alan Trounson ◽  
Peter Mountford

Confirmation of nuclear contribution is essential to all nuclear transfer experiments. Contribution is easily demonstrated in nuclear transfer progeny but more difficult to confirm in nuclear transfer embryos. The use of donor nuclei isolated from lacZ transgenic mice offers a clear and simple method to demonstrate contribution in nuclear transfer embryos and offspring. The unique line of transgenic mice (Zin40) used in this study displays nuclear localised lacZ expression in all cells, including embryonic blastomeres, and demonstrates distinctive blue nuclei when treated with X-gal substrate. This characteristic staining pattern provided an ideal marker for demonstrating nuclear contribution. Nuclear transfer embryos were generated following serial nuclear transfer of metaphase-arrested nuclei from transgenic and non-transgenic 4-cell embryos. Totipotency of nuclear transfer blastocysts was confirmed by the generation of live born offspring. Transgenic blastocysts and all tissue samples from fetuses and pups generated by nuclear transfer displayed distinctive blue nuclei when stained with X-gal. This staining pattern was characteristic of the transgenic mice from which the donor nuclei were isolated and clearly confirmed nuclear origin. The use of this marker will also allow the opportunity to investigate the developmental potential of nuclear transfer embryos by examining the contribution of nuclear transfer embryonic cells in chimaeric embryos.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Matthew L. Hall ◽  
Stephanie De Anda

Purpose The purposes of this study were (a) to introduce “language access profiles” as a viable alternative construct to “communication mode” for describing experience with language input during early childhood for deaf and hard-of-hearing (DHH) children; (b) to describe the development of a new tool for measuring DHH children's language access profiles during infancy and toddlerhood; and (c) to evaluate the novelty, reliability, and validity of this tool. Method We adapted an existing retrospective parent report measure of early language experience (the Language Exposure Assessment Tool) to make it suitable for use with DHH populations. We administered the adapted instrument (DHH Language Exposure Assessment Tool [D-LEAT]) to the caregivers of 105 DHH children aged 12 years and younger. To measure convergent validity, we also administered another novel instrument: the Language Access Profile Tool. To measure test–retest reliability, half of the participants were interviewed again after 1 month. We identified groups of children with similar language access profiles by using hierarchical cluster analysis. Results The D-LEAT revealed DHH children's diverse experiences with access to language during infancy and toddlerhood. Cluster analysis groupings were markedly different from those derived from more traditional grouping rules (e.g., communication modes). Test–retest reliability was good, especially for the same-interviewer condition. Content, convergent, and face validity were strong. Conclusions To optimize DHH children's developmental potential, stakeholders who work at the individual and population levels would benefit from replacing communication mode with language access profiles. The D-LEAT is the first tool that aims to measure this novel construct. Despite limitations that future work aims to address, the present results demonstrate that the D-LEAT represents progress over the status quo.


Sign in / Sign up

Export Citation Format

Share Document