B-PO05-175 CONDUCTION VELOCITY MAPPING: VALIDATING TIME ANNOTATION AGNOSTIC METHOD FROM AN OPTICAL MAPPING REFERENCE STANDARD

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S443
Author(s):  
Stephane Masse ◽  
D. Curtis Deno ◽  
Kumaraswamy Nanthakumar
2020 ◽  
Vol 167 ◽  
pp. 112468 ◽  
Author(s):  
Wenkun Dou ◽  
Qili Zhao ◽  
Manpreet Malhi ◽  
Xingjian Liu ◽  
Zhuoran Zhang ◽  
...  

2012 ◽  
Vol 302 (8) ◽  
pp. H1625-H1635 ◽  
Author(s):  
Leroy L. Cooper ◽  
Katja E. Odening ◽  
Min-Sig Hwang ◽  
Leonard Chaves ◽  
Lorraine Schofield ◽  
...  

Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5–9 mo) and old (3.5–6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.


Author(s):  
Corentin Dallet ◽  
Laura Bear ◽  
Josselin Duchateau ◽  
Mark Potse ◽  
Nejib Zemzemi ◽  
...  

2019 ◽  
Author(s):  
A.D. Podgurskaya ◽  
V.A. Tsvelaya ◽  
M.M. Slotvitsky ◽  
E.V. Dementyeva ◽  
K.R. Valetdinova ◽  
...  

AbstractErythromycin is an antibiotic that prolongs the QT-interval and causes Torsade de Pointes (TdP) by blocking the rapid delayed rectifying potassium current (IKr) without affecting either the slow delayed rectifying potassium current (IKs) or inward rectifying potassium current (IK1). Erythromycin exerts this effect in the range of 1.5 μM–100 μM. However, the mechanism of action underlying its cardiotoxic effect and its role in the induction of arrhythmias, especially in multicellular cardiac experimental models, remain unclear. In this study the re-entry formation, conduction velocity, and maximum capture rate were investigated in a monolayer of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a healthy donor and in a neonatal rat ventricular myocyte (NRVM) monolayer using the optical mapping method under erythromycin concentrations of 15, 30, and 45 μM. In the monolayer of human iPSC-derived cardiomyocytes, the conduction velocity (CV) varied up to 12±9% at concentrations of 15–45 μM as compared with that of the control, whereas the maximum capture rate (MCR) declined substantially up to 28±12% (p < 0.05). In contrast, the tests on the NRVM monolayer showed no significant effect on the MCR. The results of the arrhythmogenicity test provided evidence for a “window” of concentrations of the drug (15 to 30 μM) at which the probability of re-entry increased.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
L Gomez-Cid ◽  
M Moro-Lopez ◽  
A S De La Nava ◽  
A I Fernandez ◽  
M E Fernandez-Santos ◽  
...  

Abstract Background Stem cells and their secreted extracellular vesicles (EVs) have shown different cardioprotective effects. However, their impact on the electrophysiological properties of the heart tissue remains controversial. While the use of some progenitor cells seems to have antiarrhythmic potential, the use of cardiomyocyte-like cells may be proarrhythmic. The mechanisms behind, and whether these effects are linked to cell engraftment and not to their secreted products is not fully known. Purpose The aim of this study was to investigate the electrophysiological modifications induced by extracellular vesicles secreted by human cardiosphere-derived cells (CDC-EVs) in an in vitro model of atrial fibrillation in order to explore their potential antiarrhythmic effect. Methods CDCs were derived from cardiac biopsies of patients who underwent cardiac surgery for other reasons. Purified CDC-EVs resuspended in serum-free media (SFM) vs. SFM alone were added to HL-1 atrial myocyte monolayers presenting spontaneous fibrillatory activity. After 48 hours, the monolayers were fully confluent, and the electrophysiological properties were analysed through optical mapping in both the treated (n=9) and control plates (n=9). Optical mapping recordings of the monolayers were analysed with Matlab for the activation frequency, activation complexity, rotor dynamics (curvature and meandering) and conduction velocity. Results CDC-EVs reduced activation complexity of the fibrillating atrial monolayers by ∼40% (2.74±0.59 vs. 1.61±0.16 PS/cm2, p&lt;0.01). This reduction in activation complexity was accompanied by larger rotor meandering (1.47±0.82 vs. 4.32±2.25 cm/s, p&lt;0.01) and decreased curvature (1.79±0.40 vs. 0.87±0.24 rad/cm, p&lt;0.01) in the treated group. Despite reduction in the activation complexity, activation frequency did not change significantly between both groups. This could be in part because CDC-EVs increased conduction velocity by 80% (1.32±0.57 vs. 2.65±0.87 cm/s, p&lt;0.01). Low conduction velocity has been linked to higher reentry recurrence, and lower meandering and higher curvature to higher rotor stability and harder AF termination. Therefore, CDC-EVs seem to drive cardiomyocytes to a less arrhythmic profile reducing activation complexity and preventing remodelling by increasing conduction velocity and modifying rotor dynamics. Conclusions CDC-EVs significantly modify conduction velocity and rotor dynamics, therefore reducing fibrillation complexity and remodelling to drive atrial myocytes to a less arrhythmogenic profile. Testing CDC-EVs in more robust models of atrial fibrillation, the most common sustained arrhythmia in humans with significant morbidity and mortality, is of special interest. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Instituto de Salud Carlos III, Ministerio de Ciencia e Innovaciόn,CIBERCV, Spain Figure 1


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 924
Author(s):  
Lidia Gómez-Cid ◽  
Marina Moro-López ◽  
Ana de la Nava ◽  
Ismael Hernández-Romero ◽  
Ana Fernández ◽  
...  

Although cell-based therapies show potential antiarrhythmic effects that could be mediated by their paracrine action, the mechanisms and the extent of these effects were not deeply explored. We investigated the antiarrhythmic mechanisms of extracellular vesicles secreted by cardiosphere-derived cell extracellular vesicles (CDC-EVs) on the electrophysiological properties and gene expression profile of HL1 cardiomyocytes. HL-1 cultures were primed with CDC-EVs or serum-free medium alone for 48 h, followed by optical mapping and gene expression analysis. In optical mapping recordings, CDC-EVs reduced the activation complexity of the cardiomyocytes by 40%, increased rotor meandering, and reduced rotor curvature, as well as induced an 80% increase in conduction velocity. HL-1 cells primed with CDC-EVs presented higher expression of SCN5A, CACNA1C, and GJA1, coding for proteins involved in INa, ICaL, and Cx43, respectively. Our results suggest that CDC-EVs reduce activation complexity by increasing conduction velocity and modifying rotor dynamics, which could be driven by an increase in expression of SCN5A and CACNA1C genes, respectively. Our results provide new insights into the antiarrhythmic mechanisms of cell therapies, which should be further validated using other models.


Sign in / Sign up

Export Citation Format

Share Document