lumped plasticity
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 7 ◽  
Author(s):  
Gennaro Magliulo ◽  
Chiara Di Salvatore ◽  
Marianna Ercolino

As widely known, connections performance under seismic loads can significantly affect the structural response of RC precast buildings. Within the scientific community, an increasing number of studies has been carried out on this topic, in the light of the recent earthquake aftermaths all over Europe. Indeed, connections turned out to be the weakest part of the precast structures and their failure often provoked the global collapse of the whole building. The present study aims at assessing the seismic behavior of a single-story RC precast building in terms of global collapse implementing two different models of the beam-to-column connection, a simplified and a refined one. A lumped plasticity approach is used to simulate the structural nonlinear behavior at the column base. In order to assess the refined connection model, a preliminary scheme with an isolated single dowel is validated by comparing the pushover outcomes with experimental results from literature. Nonlinear static and dynamic analyses are performed on two models of a 3D single-story RC precast building, one implementing the simple beam-to-column connection model and the other one implementing the refined mode. The comparison clearly shows that the differences are negligible if the global collapse limit state is considered.


2019 ◽  
Vol 13 (1) ◽  
pp. 269-287 ◽  
Author(s):  
G. Valentina ◽  
Marina Poiani ◽  
Francesco Clementi ◽  
Giuseppe Pace ◽  
Stefano Lenci

Background: The vulnerability assessment of existing school buildings against earthquakes represents a priority concern for society. In recent years, several countries promote seismic rehabilitation projects of school buildings, including the allocation of funds to regions with high seismic hazard. Objective: This research aims to highlight some key role aspects related to difficulties encountered in the numerical modelling of RC structures hosting school activities. This work evaluates the seismic vulnerability of school buildings located in the municipality of Trecastelli (Marche, Central Italy) to quantify the effective influence of typical and specific seismic vulnerabilities detected on the global seismic behaviour of each building. The effectiveness of a possible Carbon Fibre Reinforced Polymer (CFRP) local strengthening intervention, for the case study, aimed to confine unconfined beam-column joints is also considered. Methods: Three different numerical models of a Reinforced Concrete (RC) school building are implemented with the lumped plasticity, the distributed plasticity (fibre) and the 3D Continuum Finite Element (FE) approaches. Nonlinear static (pushover) analyses are performed to assess the global seismic behaviour of the structure, and the limitations to represent the reality with different approaches. After the seismic vulnerability assessment of the case study, a CFRP retrofitting intervention is proposed to confine external beam-column joints. Results: The comparison of the numerical results of three models shows that the fibre model is the least suitable means to represent shear problems, while the lumped plasticity model is closer to reality than the previous one even if it does not take into account the concomitance of bending, shear and axial force and the interaction between them in the inelastic response. Of course, the 3D Continuum model is the most accurate representation to describe the complex and combined mechanisms developed in the joint panels. Nonlinear static (pushover) analyses carried out on unreinforced and reinforced structures of Continuum model demonstrate that the Fibre Reinforced Polymer (FRP) strengthening improves the displacement capacity of the structure. Conclusion: This study has highlighted the strengths and weaknesses of different modelling types. The meaningful information about mechanisms developed in joints given by the 3D Continuum FE model is useful to identify shortcomings of the design project and to conceive a retrofitting strengthening intervention. CFRP sheets externally bonded on beam-column joints may improve the seismic frame performances without a significant change of the structural stiffness, promoting a ductile failure mode with a higher displacement capacity than the unreinforced case.


2019 ◽  
Vol 9 (20) ◽  
pp. 4263 ◽  
Author(s):  
Zhenliang Liu ◽  
Suchao Li

This study explores the possibility of using an ANN-based model for the rapid numerical simulation and seismic performance prediction of reinforced concrete (RC) columns. The artificial neural network (ANN) method is implemented to model the relationship between the input features of RC columns and the critical parameters of the commonly used lumped plasticity (LP) model: The strength and the yielding, capping and ultimate deformation capacity. Cyclic test data of 1163 column specimens obtained from the PEER and NEEShub database and other sources are collected and divided into the training set, test set and validation set for the ANN model. The effectiveness of the proposed ANN model is validated by comparing it with existing explicit formulas and experimental results. Results indicated that the developed model can effectively predict the strength and deformation capacities of RC columns. Furthermore, the response of two RC frame structures under static force and strong ground motion were simulated by the ANN-based, bi-linear and tri-linear LP model method. The good agreement between the proposed model and test results validated that the ANN-based method can provide sufficiently accurate model parameters for modeling the seismic response of RC columns using the LP model.


Author(s):  
Francesco Clementi ◽  
Giovanni Di Sciascio ◽  
Sergio Di Sciascio ◽  
Stefano Lenci

In many seismic countries in the world (e.g. Europe, Northern USA, Japan, Turkey, etc.), the assessment of existing structures is a priority, since the majority of the building heritage was designed according to out-of-date or even non-seismic codes. The uncertainties about the nonlinear behaviour of the structures are, therefore, important and the nonlinear response should be treated directly, with a correspondingly strong increase in complexity of the assessment procedure. The assessment of regular reinforced concrete frame buildings has been performed, according to the Italian Seismic Code, Eurocode 8 and the CNR DT-212 guideline. A lumped plasticity model has been used with the aim of quantifying the differences between a fixed and a continuously updated shear span and between the use of inelastic springs located at the member ends or continuously along the beam elements, and with the purpose of considering the influence of axial-bending-shear interaction on the global capacity of the buildings.


Author(s):  
Mohammad E. Koopaee ◽  
Rajesh P. Dhakal ◽  
Gregory MacRae

Application of a fibre-element nonlinear modelling technique for seismic collapse capacity assessment of RC frame buildings in comparison with conventional lumped plasticity models is investigated in this paper. Constitutive material models of concrete and steel for fibre elements are adopted to enable simulation of the loss in vertical load carrying capacity of structural columns. Inclusion of the nonlinear second order P−Δ effects accelerated by degrading behaviour of steel and concrete materials in the fibre model allows prediction of the sidesway mode of collapse. The model is compared with nonlinear lumped plasticity models in which stiffness and strength degradation is replicated through degrading parameters in structural components. Static cyclic analyses of an example cantilever column and a portal frame indicate that the variation of axial loads in columns may result in accelerated degradation and failure of structural components which is not taken into account by lumped plasticity models. Moreover, incremental dynamic analysis of a ten-storey RC frame shows that the lumped plasticity model may overestimate building collapse capacity when vertical failure of structural components occurs prior to sidesway instability.


Sign in / Sign up

Export Citation Format

Share Document