engineering investigation
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 48)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Robert Peruzzi

This case involved industrial equipment whose repeated, seemingly random failures resulted in the buyer of that equipment suing the seller. The failures had been isolated to a group of several transistors within electro-mechanical modules within the equipment, but the root cause of those transistors failing had not been determined. The equipment seller had more than 1,000 units in the field with no similar failures. And the electro-mechanical module manufacturer had more than 20,000 units in the field with no similar failures. Electrical contractors hired by the buyer had measured power quality, and reported no faults found in the three-phase power at the equipment terminals. This paper presents circuit analyses of the failing electro-mechanical module, basics of electrostatic discharge damage and protection, and the root cause of these failures — an electrical code-violating extraneous neutral-to-ground bond in a secondary power cabinet.


2021 ◽  
pp. 875529302110429
Author(s):  
Yajie Lee ◽  
William P Graf ◽  
Charles C Thiel ◽  
Zhenghui Hu ◽  
Mark Ellis

Seismic risk evaluation studies for real estate portfolios conducted by technical professionals (often Civil and Structural Engineers) have become increasingly desirable and common in financial decisions. In this article, we develop a series of risk measures and ratings based on common outcomes from probabilistic portfolio seismic risk assessments. We first define two portfolio risk metrics: Portfolio Expected Loss (PELα) and Portfolio Upper Loss (PULα), where “α” is the annual exceedance probability, or the corresponding return period (“1/α”). PULα/PELα ratio characterizes the uncertainty in estimated portfolio risks which results from the uncertainty in seismic performance of the individual assets. Three uncertainty levels are defined, namely, low, medium, and high, based on the PULα/PELα. We then develop an asset risk metric, called Tail Contribution Index (TCIα), that characterizes the contribution of individual assets to the portfolio losses that fall within the high-consequence “tail” of the portfolio loss distribution. To describe the overall engineering efforts of a portfolio seismic risk study, we develop a portfolio risk metric, called Portfolio Level of Investigation (PLIα), that characterizes the effective level of engineering investigation. Three investigation levels are defined: low ( desktop), medium ( semi-engineered), and high ( engineered), based on the PLIα. Finally, based on the combination of uncertainty level and investigation level, we develop a rating scheme by which the quality (Qα) of a portfolio seismic risk study is characterized. Five quality levels are defined: very poor, poor, fair, good, and very good. These risk indices and ratings can help stakeholders and technical professionals better diagnose and communicate portfolio seismic risks, scope adequate studies, effectively utilize valuable resources, and base financial decisions on risk assessment results that have the desired reliability.


2021 ◽  
Vol 44 (3) ◽  
pp. 1-8
Author(s):  
Gordon Wilson

The global mining community has seen a dangerous sequence of failures in tailings dams, beginning with Mount Polley mine, followed by the Samarco, Cadia Valley and Córrego do Feijão mines. This sequence of failures began on August 4, 2014, at the Mount Polley tailings storage facility in British Columbia, Canada. The initial failure in the embankment at the Mount Polley tailings storage facility had substantial impact on the global mining industry. The Independent Expert Engineering Investigation and Review Panel (IEEIRP) tasked with the investigation of the breach in the tailings dam at Mount Polley made major contributions for new guidelines. The incident has given rise to comprehensive recommendations for best available tailings technologies (BAT) based on principles such as the elimination of surface water from impoundments with the promotion of unsaturated conditions in the tailings through drainage provisions. The application of these BAT principles for the surface storage of tailings leads to the use of filtered tailings technology. Filtered tailings technology or “dry stack tailings” can satisfy each of the BAT components when the impoundment is properly designed and constructed. The implementation of the best available technologies for the physical stability (BAT-PS) of tailings impoundments competes directly with the best available technologies for the chemical stability (BAT-CS) of reactive tailings that may produce acid and metalliferous drainage. The new expertise in mine waste management required to achieve both BAT-PS and BAT-CS are discussed in the present paper.


Sign in / Sign up

Export Citation Format

Share Document