scholarly journals Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. M. Mortuza ◽  
Wei Zheng ◽  
Chengxin Zhang ◽  
Yang Li ◽  
Robin Pearce ◽  
...  

AbstractSequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.

1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


Author(s):  
Arun G. Ingale

To predict the structure of protein from a primary amino acid sequence is computationally difficult. An investigation of the methods and algorithms used to predict protein structure and a thorough knowledge of the function and structure of proteins are critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this chapter sheds light on the methods used for protein structure prediction. This chapter covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, it presents an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction, giving unique insight into the future applications of the modeled protein structures. In this chapter, current protein structure prediction methods are reviewed for a milieu on structure prediction, the prediction of structural fundamentals, tertiary structure prediction, and functional imminent. The basic ideas and advances of these directions are discussed in detail.


2019 ◽  
Vol 41 (8) ◽  
pp. 745-750 ◽  
Author(s):  
Yufeng Cai ◽  
Xiongjun Li ◽  
Zhe Sun ◽  
Yutong Lu ◽  
Huiying Zhao ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2442 ◽  
Author(s):  
Teppei Ikeya ◽  
Peter Güntert ◽  
Yutaka Ito

To date, in-cell NMR has elucidated various aspects of protein behaviour by associating structures in physiological conditions. Meanwhile, current studies of this method mostly have deduced protein states in cells exclusively based on ‘indirect’ structural information from peak patterns and chemical shift changes but not ‘direct’ data explicitly including interatomic distances and angles. To fully understand the functions and physical properties of proteins inside cells, it is indispensable to obtain explicit structural data or determine three-dimensional (3D) structures of proteins in cells. Whilst the short lifetime of cells in a sample tube, low sample concentrations, and massive background signals make it difficult to observe NMR signals from proteins inside cells, several methodological advances help to overcome the problems. Paramagnetic effects have an outstanding potential for in-cell structural analysis. The combination of a limited amount of experimental in-cell data with software for ab initio protein structure prediction opens an avenue to visualise 3D protein structures inside cells. Conventional nuclear Overhauser effect spectroscopy (NOESY)-based structure determination is advantageous to elucidate the conformations of side-chain atoms of proteins as well as global structures. In this article, we review current progress for the structure analysis of proteins in living systems and discuss the feasibility of its future works.


2019 ◽  
Author(s):  
Larry Bliss ◽  
Ben Pascoe ◽  
Samuel K Sheppard

AbstractMotivationProtein structure predictions, that combine theoretical chemistry and bioinformatics, are an increasingly important technique in biotechnology and biomedical research, for example in the design of novel enzymes and drugs. Here, we present a new ensemble bi-layered machine learning architecture, that directly builds on ten existing pipelines providing rapid, high accuracy, 3-State secondary structure prediction of proteins.ResultsAfter training on 1348 solved protein structures, we evaluated the model with four independent datasets: JPRED4 - compiled by the authors of the successful predictor with the same name, and CASP11, CASP12 & CASP13 - assembled by the Critical Assessment of protein Structure Prediction consortium who run biannual experiments focused on objective testing of predictors. These rigorous, pre-established protocols included 7-fold cross-validation and blind testing. This led to a mean Hermes accuracy of 95.5%, significantly (p<0.05) better than the ten previously published models analysed in this paper. Furthermore, Hermes yielded a reduction in standard deviation, lower boundary outliers, and reduced dependency on solved structures of homologous proteins, as measured by NEFF score. This architecture provides advantages over other pipelines, while remaining accessible to users at any level of bioinformatics experience.Availability and ImplementationThe source code for Hermes is freely available at: https://github.com/HermesPrediction/Hermes. This page also includes the cross-validation with corresponding models, and all training/testing data presented in this study with predictions and accuracy.


2020 ◽  
Author(s):  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Genki Terashi ◽  
Aashish Jain ◽  
Yuki Kagaya ◽  
Daisuke Kihara

ABSTRACTProtein residue-residue contact prediction from protein sequence information has undergone substantial improvement in the past few years, which has made it a critical driving force for building correct protein tertiary structure models. Improving accuracy of contact predictions has, therefore, become the forefront of protein structure prediction. Here, we show a novel contact map denoising method, ContactGAN, which uses Generative Adversarial Networks (GAN) to refine predicted protein contact maps. ContactGAN was able to make a consistent and significant improvement over predictions made by recent contact prediction methods when tested on two datasets including protein structure modeling targets in CASP13. ContactGAN will be a valuable addition in the structure prediction pipeline to achieve an extra gain in contact prediction accuracy.


2021 ◽  
Vol 8 (3) ◽  
pp. 103-111
Author(s):  
Krishna R Gupta ◽  
Uttam Patle ◽  
Uma Kabra ◽  
P. Mishra ◽  
Milind J Umekar

Three-dimensional protein structure prediction from amino acid sequence has been a thought-provoking task for decades, but it of pivotal importance as it provides a better understanding of its function. In recent years, the methods for prediction of protein structures have advanced considerably. Computational techniques and increase in protein sequence and structure databases have influence the laborious protein structure determination process. Still there is no single method which can predict all the protein structures. In this review, we describe the four stages of protein structure determination. We have also explored the currenttechniques used to uncover the protein structure and highpoint best suitable method for a given protein.


2021 ◽  
Author(s):  
Chunxiang Peng ◽  
Xiaogen Zhou ◽  
Yuhao Xia ◽  
Yang Zhang ◽  
Guijun Zhang

With the development of protein structure prediction methods and biological experimental determination techniques, the structure of single-domain proteins can be relatively easier to be modeled or experimentally solved. However, more than 80% of eukaryotic proteins and 67% of prokaryotic proteins contain multiple domains. Constructing a unified multi-domain protein structure database will promote the research of multi-domain proteins, especially in the modeling of multi-domain protein structures. In this work, we develop a unified multi-domain protein structure database (MPDB). Based on MPDB, we also develop a server with two functional modules: (1) the culling module, which filters the whole MPDB according to input criteria; (2) the detection module, which identifies structural analogues of the full-chain according to the structural similarity between input domain models and the protein in MPDB. The module can discover the potential analogue structures, which will contribute to high-quality multi-domain protein structure modeling.


2012 ◽  
Author(s):  
Satya Nanda Vel Arjunan ◽  
Safaai Deris ◽  
Rosli Md Illias

Dengan wujudnya projek jujukan DNA secara besar-besaran, teknik yang tepat untuk meramalkan struktur protein diperlukan. Masalah meramalkan struktur protein daripada jujukan DNA pada dasarnya masih belum dapat diselesaikan walaupun kajian intensif telah dilakukan selama lebih daripada tiga dekad. Dalam kertas kerja ini, teori asas struktur protein akan dibincangkan sebagai panduan umum bagi kajian peramalan struktur protein sekunder. Analisis jujukan terkini serta prinsi p yang digunakan dalam teknik-teknik tersebut akan diterangkan. Kata kunci: peramalan stuktur sekunder protein; rangkaian neural. In the wake of large-scale DNA sequencing projects, accurate tools are needed to predict protein structures. The problem of predicting protein structure from DNA sequence remains fundamentally unsolved even after more than three decades of intensive research. In this paper, fundamental theory of the protein structure of the protein structure will be presented as a general guide to protein secondary structure prediction research. An overview of the state-of-theart in sequence analysis and some princi ples of the methods invloved wil be described. Key words: protein secondary structure prediction;neural networks.


Sign in / Sign up

Export Citation Format

Share Document