ground fissure
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 27)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Dong Feng ◽  
Enke Hou ◽  
Xiaoshen Xie ◽  
Xiaoyang Che ◽  
Pengfei Hou ◽  
...  

Groundwater leakage in the loess gully terrain is one of the main hazards of coal seam mining at shallow burial depth. The burial depth of the 5−2 coal seam is less than 50 m from the ground in the gully of the study site. The fissures that expand upward after mining can easily penetrate the ground to form a water-conducting channels. During rainy periods, there is a potential risk of groundwater leakage. In order to reveal the characteristics of plane development and the dynamic evolution of gully ground fissures, the typical U-shaped gully in the northern Shaanxi coal mine was studied using the field measurement methods of “On-site measurement” and UAV aerial photography. Based on the experimental platform of ground fissure leakage developed and designed by the team, an indoor test model corresponding to the actual situation was established. In addition, the mathematical models of actual flood inrush, fissure width, and flood flow in the channel were established. The actual mine water flow and the mine drainage capacity were compared and analyzed, thus proposing criteria for classifying gully mining ground fissure collapsed water hazards. These criteria can provide theoretical references for predicting fissure leakage hazard zones in the ground gully of shallow buried coal seams. According to the development height of the water-conducting fissure zone (WCFZ), the treatment methods of ground fissures in gullies under different security conditions were designed, which was applied in the field with good results. The results showed that the treatment methods in this paper could effectively prevent the leakage of groundwater in the gullies along the ground fissures.


Author(s):  
Enlin Ma ◽  
Jinxing Lai ◽  
Shuoshuo Xu ◽  
Xinghao Shi ◽  
Jian Zhang ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ziqi Li ◽  
Jinxing Lai ◽  
Yao Li ◽  
Junling Qiu ◽  
Yufeng Shi ◽  
...  

2021 ◽  
pp. 105043
Author(s):  
Junyan Zhao ◽  
Cong Liu ◽  
Jianbing Peng ◽  
Jianwei Qiao ◽  
Zhenjiang Meng ◽  
...  

2021 ◽  
Vol 80 (14) ◽  
Author(s):  
Ruichun Liu ◽  
Chengsheng Yang ◽  
Qingliang Wang ◽  
Lingyun Ji

AbstractThe Datong region of China suffers from severe ground fissure (GF) disasters. The Jichechang ground fissure (JGF) is typical among the GFs in Datong and is the most active. To provide scientific guidance for disaster mitigation, understanding the mechanisms governing GF activity in Datong needs to be improved. Here, long-term monitoring data (> 10 years) for the JGF are used to study the characteristics of its activity. The results show that the formation of GFs is mainly controlled by concealed faults. The JGF is mainly active in the vertical direction, with a differential vertical displacement 2.5 times greater than the horizontal displacement. The GF activity is periodic, with a periodicity of 320–420 days, which corresponds to the cycle of local agricultural irrigation. The JGF is especially active in June and July. The vertical activity of this fissure also displays a distinct quasi-periodic step-like displacement acceleration with a duration of 18–38 days. Numerical simulations show that irrigation pumping within 10 km of the JGF has a significant effect on the vertical movement of GFs. These results provide a better understanding of the mechanisms governing GF activity in this area and provide a valuable reference for the study of GFs in other regions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10547
Author(s):  
Yexin Li ◽  
Gang Lv ◽  
Hongbo Shao ◽  
Quanhou Dai ◽  
Xinpeng Du ◽  
...  

Ground fissures (GF), appearing in front of dumps, are one of the most obvious and harmful geological hazards in coal mining areas. Studying preferential flow and its influencing factors in the ground fissures of dumps may provide basic scientific support for understanding the rapid movement of water and vegetation restoration and reconstruction in mining areas. Based on field surveys of ground fissures, three typical ground fissures were selected in the studied dump. The morphological characteristics of preferential flow for ground fissures were determined through field dye tracing, laboratory experiments, and image processing technology. The results indicated that the lengths of the three ground fissures ranged from 104.84 cm to 120.83 cm, and the widths ranged from 2.86 cm to 9.85 cm. All of the ground fissure area densities were less than 10%, and the proportion of ground fissure surface area was small in the dump. The maximum fissure depth was 47 cm, and the minimum was 16 cm. The ground fissure widths ranged from 0 cm to 14.98 cm, and the fissure width and fissure width-to-depth ratios decreased with increasing soil depth. The stained area was greater than 90% in the 0–5 cm soil layers of the three fissures, and water movement was dominated by matrix flow. The stained width decreased from 90 cm to 20 cm with increasing soil depth. The preferential flow was mainly concentrated on both sides of the fissure, which was distributed as a “T” shape. The preferential flow stained area ratios were 27.23%, 31.97%, and 30.73%, respectively, and these values decreased with increasing soil depth. The maximum stained depths of the preferential flow among the three fissures were different, and the maximum stained depth of GF II was significantly larger than that of GF I and GF III (P < 0.05). The stained path numbers of the three fissures ranged from 0 to 49. With increasing soil depth, the stained path number first increased and then decreased. The stained path widths of the three fissures ranged from 0 cm to 90 cm. With the increase in soil depth, the stained path width decreased. The stained area ratio was significantly positively correlated with ground fissure width, the ground fissure width-to-depth ratio, soil saturated hydraulic conductivity, soil organic matter, and sand content and was significantly negatively correlated with soil water content and clay content. The stained path number was significantly positively correlated with ground fissure width, the ground fissure width-to-depth ratio, soil saturated hydraulic conductivity and soil organic matter. The stained path width was significantly positively correlated with the ground fissure width-to-depth ratio, soil saturated hydraulic conductivity, soil organic matter and sand content and was significantly negatively correlated with clay content. Plant roots could significantly increase the stained area ratio, stained path number, and width and promote the formation and development of preferential flow.


Sign in / Sign up

Export Citation Format

Share Document