fissure zone
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xin Liu ◽  
Jian Sun ◽  
Yong Yang

The stress distribution, failure depth, and shape and range of overlying strata of the stope are important bases for the prevention of roof water hazards and determination of reasonable locations of roof roadways. Based on the hydrogeological data of the E9103 workface, FLAC numerical simulation software was used to establish a numerical calculation model of the overlying strata of the E9103 inclined coal seam, and the stress distribution and failure characteristics of the overlying strata were analyzed. The development height of the caving and water-flowing fractured zones in the overlying strata of the workface was determined. Results showed that the stress reduction area appeared above the goaf in the form of an “arched” distribution, and tensile stress occurred in the local area of the overburden. The overburden relief arch of the workface was symmetrically distributed along the advanced direction and asymmetrically distributed along the inclined direction, with the arch crown deflecting above the workface. The horizontal and vertical displacements of the overlying strata of the stope increased with the advancing distance of the workface. The horizontal displacement in the x -direction presented two obvious regions, and the critical points of the two regions moved forward with the advancement of the workface and showed a certain degree of symmetry. The horizontal displacement in the y -direction presented an “inverted bowl” distribution and increased with the advancement of the workface. The main failure forms of the overlying strata of the workface were a tensile and shear failure, and shear failure was dominant in the upper direction. The height of the overburden caving zone in the workface had little relationship with the advancing distance of the workface and increased slowly as the advancing distance of the workface increased. The development height of the caving zone is 7.2–18.13 m. The development height of the water conduction fissure zone increased rapidly with the increase in the advancing distance of the workface. When the advancing distance was equal to the length of the workface, the development height of the water conduction fissure zone was flat and basically maintained at a stable value. The development height of the water conduction fissure zone is 30.8–62.2 m. These research findings have important engineering importance for ensuring safe and efficient mining of E9103 workface.


2021 ◽  
Author(s):  
Min Tu ◽  
Gaoming Zhao ◽  
Xiangyang Zhang ◽  
Qingwei Bu ◽  
Jiaxin Dang

Abstract Blasting roof cutting and pressure relief is an effective technical way to solve the problem of thick and hard roof. In order to solve this problem, it is necessary to carry out research on the evolution of cracks between the cut holes of the blasting roof. The univariate comparative analysis method is used to analyze the evolution law of the fissures between the cuts under different factors. Furthermore, it is concluded that the broken zone and fissure zone of the surrounding rock of the single-hole blasting hole wall are symmetrically distributed in the confining pressure environment, and the fissure zone and the surrounding rock fissure zone between the holes show an "X"-shaped continuous ev olution. By analyzing the evolution law of cracks between blasting holes, the critical discriminant equation of penetration between blasting holes under mining stress environment is given, which is used to optimize the technical plan of blasting roof cutting. Engineering practice shows that the blasting roof cutting scheme has achieved a good seam effect, creating good initial conditions for the cutting of thick and hard roofs.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dan Zhang ◽  
Zhiping Hu ◽  
Ganggang Lu ◽  
Rui Wang ◽  
Xiang Ren

A ground fissure is a geological disaster in which the vertical dislocation of strata causes surface rupture. Ground fissures can cause extreme harm to the surface and underground buildings. Ground fissure activity can result in different settlement on the two sides of the strata, which will generate additional stress (pressure) that differs from the stress of the general stratum on underground structures across the ground fissure zone. It is essential to assess the effective stress of strata in the design of underground engineering structures across a ground fissure zone. The Xi’an ground fissure through a utility tunnel was focus of the research, and a physical model and data for oblique crossing of the 45° ground fissure were analyzed. A model of the utility tunnel structure was established, including the surrounding soil load as an active ground fissure environment. This model was used to calculate the vertical formation pressure of the overlying soil on the utility tunnel. A method to calculate the overlying load on the utility tunnel caused by ground fissure activity was proposed and compared with the calculation based on the A. Marston principle. The results showed that the ground fissure load calculation method based on the strata-holding effect can effectively calculate the earth pressure of the surrounding soil layer of the utility tunnel in the cross-ground fissure section. The results of this work provide guidance and reference value for the design of a utility tunnel in an area with the potential for a ground fissure.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Hao Zha ◽  
Weiqun Liu ◽  
Qinghong Liu

This paper mainly involved the testing of self-designed hydrophilicity-related geomaterials and application of overlying strata monitoring in a mining area in Northwest China. We employed the orthogonal testing technique to select the ingredient ratio of hydrophilicity-related geomaterials and optimized the mechanical properties of materials, such as density, elastic modulus, Poisson ratio, compressive strength, tensile strength, and water absorption rate on the basis of regression analysis. It can be seen that the proportion of the mixture clearly determines the mechanical properties of similar materials. Among them, the content of silicone oil and the cement-Vaseline ratio have the most obvious effects on the mechanical properties of the material. By using the hydrophilicity-related geomaterials with ingredient optimization, we built a physical model to simulate the failure progress of the workface in one of the coal mines in Northwest China. It was shown that three remarkable characteristic parts, including collapse zone, fissure zone, and layer-separating space, appear in the overlying strata. Furthermore, the fractured zone above the separating band is just located under the main aquifer. Finally, compared with in-field data, it was verified that the height of the collapse zone and water-guiding fissure zone measured at three boreholes are in good agreement with the experiment. Thus, the failure mode of overburden and the vertical stress and displacement changes are consistent with the actual engineering. Self-developed hydrophilicity-related geomaterials can be applied to laboratory physical simulation experiments of overlying strata. It provides the basis for future research on large-scale physical water-containing similar simulation experiments.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Hongkai Han ◽  
Jialin Xu ◽  
Xiaozhen Wang ◽  
Jianlin Xie ◽  
Yantuan Xing

Overburden key strata (KS) have a significant influence on abutment pressure distribution. However, current calculation methods for working surface abutment pressure do not consider the influence of the overburden KS. This study uses KS theory to analyze the overburden load transferred to coal-rock masses on both sides of the stope through fractured blocks in different layers of the KS in the fissure zone and KS in different layers of the curve subsidence zone. Using Winkler’s elastic foundation beam theory, we consider the fissure zone KS on the coal mass side and the curve subsidence zone KS as many elastic foundation beams interact with each other. A method to calculate the abutment pressure of the coal mass and the goaf was then established, considering the influence of the overburden KS. The abutment pressure distribution of working surface 207 after mining was then calculated using our method, based on mining conditions present in the Tingnan coal mine. The calculated results were verified using measurements from borehole stress meters and microseismic monitoring systems, as well as numerical simulations. In addition, the calculation results were used to determine a reasonable position for the stopping line and remaining width of the roadway’s protection coal pillar in working surface 207. The results of this study can be used to calculate the abutment pressure distribution of the working surface under a variety of overburden KS conditions. The results can also provide guidance for forecasting and preventing mine dynamic hazards, controlling the surrounding rock in mining roadways, determining reasonable widths for protection coal pillars, and designing the layout of mining roadways.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Feisheng Feng ◽  
Suping Peng ◽  
Pingjie Fu ◽  
Wenfeng Du ◽  
Dongjing Xu

Factors such as the hydrogeological conditions, the lithological characteristics of the columns’ components, and the lithological characteristics and stress conditions of the coal seam roof and floor are interrelated and jointly affect column collapse. In this study, the disaster-causing mechanism of column collapse was studied. Based on the system theory, a collapsed column is divided into the column and the surrounding fissure zone as two subsystems for analysis. And, the permeability coefficient of the broken rock under different conditions was measured by a self-designed equipment. The variations of the permeability coefficient for rock samples with different particle diameters, different axial pressures Pa, and different seepage velocities were further studied. Through phenomena analysis and experimental data processing, it was concluded that, under the same pressure state, smaller particle diameter meant smaller permeability coefficient; with the increase of axial pressure, the permeability coefficient decreased; and the larger the water flow velocity was, the smaller the permeability coefficient became. For particle diameter Φ = 2.5–5 mm or larger, the tiny particles formed by randomly washing and breaking in the water flow blocked some of the channels. For particle diameters smaller than Φ = 2.5–5 mm, the smaller permeability coefficient was attributed to the turbulence resulting from non-Darcy flow. The study on the permeability of the fractured rock mass clarified the mechanism of water inrush from the fissure zone of the collapsed column: the collapsed column itself was impermeable, and the permeability of the fissure zone around the collapsed column was related to the lithological characteristics of the rock within the fissure zone and the sequencing of rock strata. When mining coal in areas with collapsed columns, experiments on collapsed columns and fissure zones are prerequisites. This study has a certain referential value for coal mining in this region.


Energies ◽  
2017 ◽  
Vol 10 (5) ◽  
pp. 734 ◽  
Author(s):  
Yun Zhang ◽  
Shenggen Cao ◽  
Lixin Lan ◽  
Rui Gao ◽  
Hao Yan

Sign in / Sign up

Export Citation Format

Share Document