scholarly journals Marine biofilms on different fouling control coating types reveal differences in microbial community composition and abundance

2021 ◽  
Author(s):  
Maria Papadatou ◽  
Samuel Robson ◽  
Sergey Dobretsov ◽  
Joy E. M. Watts ◽  
Jennifer Longyear ◽  
...  

Marine biofouling imposes serious environmental and economic impacts on marine applications, especially in the shipping industry. To combat biofouling, protective coatings are applied on vessel hulls which are divided into two major groups: biocidal and non-toxic fouling-release. The aim of the current study was to explore the effect of coating type on microbial biofilm community profiles to better understand the differences between the communities developed on fouling control biocidal antifouling and biocidal-free coatings. Biocidal (Intersmooth(R) 7460HS SPC), fouling-release (Intersleek(R) 900), and inert surfaces were deployed in the marine environment for 4 months and the biofilms that developed on these surfaces were investigated using Illumina NGS sequencing, targeting the prokaryotic 16S rRNA gene. The results confirmed differences in the community profiles between coating types. The biocidal coating supported communities dominated by Alphaproteobacteria (Loktanella, Sphingorhabdus, Erythrobacter) and Bacteroidetes (Gilvibacter), whilst other taxa such as Portibacter and Sva0996 marine group, proliferated on the fouling-release surface. Knowledge of these marine biofilm components on fouling control coatings will serve as a guide for future investigations of marine microfouling as well as informing the coatings industry of potential microbial targets for robust coating formulations.

2017 ◽  
Author(s):  
J. Travis Hunsucker ◽  
Harrison Gardner ◽  
Geoffrey Swain

Static immersion studies are commonly used to assess the performance of fouling control coatings. While these tests provide valuable data, it is also of importance to understand the drag forces associated with the accrued fouling communities and the velocities required for fouling removal. Combining the measurements of hydrodynamic testing with those from static immersion testing can help in predicting the performance of coatings prior to their consideration for use on Navy vessels. Replicates of five commercially available coatings (three fouling release coatings and two biocide based coatings) were deployed at two static immersion test sites located along the east coast of Florida (Port Canaveral and Sebastian Inlet). After four months of immersion, the panels were removed, photographed, subjected to known water velocities in a high-speed boat modified for hydrodynamic testing. Each panel was run at 5 m/s for 10 minutes, photographed, and then run at 10 m/s for 10 minutes. The drag forces were measured at speeds of 3, 6, 8.8 and 10 m/s for 1 minute each. Photographs taken before, during, and after hydrodynamic testing were also visually analyzed. After testing adhesion measurements were taken to determine the attachment strength of any hard fouling organisms which remained on the panels. The data collected from this series of tests, enabled the fouling control and fouling release properties of each coating to be characterized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raiza Hasrat ◽  
Jolanda Kool ◽  
Wouter A. A. de Steenhuijsen Piters ◽  
Mei Ling J. N. Chu ◽  
Sjoerd Kuiling ◽  
...  

AbstractThe low biomass of respiratory samples makes it difficult to accurately characterise the microbial community composition. PCR conditions and contaminating microbial DNA can alter the biological profile. The objective of this study was to benchmark the currently available laboratory protocols to accurately analyse the microbial community of low biomass samples. To study the effect of PCR conditions on the microbial community profile, we amplified the 16S rRNA gene of respiratory samples using various bacterial loads and different number of PCR cycles. Libraries were purified by gel electrophoresis or AMPure XP and sequenced by V2 or V3 MiSeq reagent kits by Illumina sequencing. The positive control was diluted in different solvents. PCR conditions had no significant influence on the microbial community profile of low biomass samples. Purification methods and MiSeq reagent kits provided nearly similar microbiota profiles (paired Bray–Curtis dissimilarity median: 0.03 and 0.05, respectively). While profiles of positive controls were significantly influenced by the type of dilution solvent, the theoretical profile of the Zymo mock was most accurately analysed when the Zymo mock was diluted in elution buffer (difference compared to the theoretical Zymo mock: 21.6% for elution buffer, 29.2% for Milli-Q, and 79.6% for DNA/RNA shield). Microbiota profiles of DNA blanks formed a distinct cluster compared to low biomass samples, demonstrating that low biomass samples can accurately be distinguished from DNA blanks. In summary, to accurately characterise the microbial community composition we recommend 1. amplification of the obtained microbial DNA with 30 PCR cycles, 2. purifying amplicon pools by two consecutive AMPure XP steps and 3. sequence the pooled amplicons by V3 MiSeq reagent kit. The benchmarked standardized laboratory workflow presented here ensures comparability of results within and between low biomass microbiome studies.


2021 ◽  
Author(s):  
Gunther Brucha ◽  
Andrea Aldas-Vargas ◽  
Zacchariah Ross ◽  
Peng Peng ◽  
Siavash Atashgahi ◽  
...  

Abstract2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D’s high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0—40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.


Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2011 ◽  
Vol 77 (19) ◽  
pp. 6972-6981 ◽  
Author(s):  
Ryan J. Newton ◽  
Jessica L. VandeWalle ◽  
Mark A. Borchardt ◽  
Marc H. Gorelick ◽  
Sandra L. McLellan

ABSTRACTThe complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within theLachnospiraceaefamily, which was closely related to the genusBlautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for humanBacteroidales(based on the HF183 genetic marker), totalBacteroidalesspp., and enterococci and the conventionalEscherichia coliand enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and humanBacteroidalesincreased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1907.2-1907
Author(s):  
Y. Tsuji ◽  
M. Tamai ◽  
S. Morimoto ◽  
D. Sasaki ◽  
M. Nagayoshi ◽  
...  

Background:Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of HLA-DRB1*SE, ACPA and oral microbiota of RA patients remains to be elucidated.Objectives:The Nagasaki Island Study, which had started in 2014 collaborating with Goto City, is intended for research of the preclinical stage of RA, including ACPA/HLA genotype screening and ultrasound and magnetic resonance imaging examinations in high-risk subjects. Using the samples accumulated in this cohort, we have tried to investigate the difference of oral microbiota among RA patients and healthy subjects regarding to ACPA and HLA-DRB1*SE.Methods:Blood and salivary samples were obtained from 1422 subjects out of 4276 who have participated in the Nagasaki Island Study from 2016 to 2018. ACPA positivity was 1.7 % in total. Some of RA patients resided in Goto City participated in the Nagasaki Island Study. At this point, we selected 291 subjects, who were ACPA positive non-RA healthy subjects (n=22) and patients with RA (n=33, 11 subjects were ACPA positive and 22 ACPA negative respectively) as the case, age and gender matched ACPA negative non-RA healthy subjects (n=236) as the control. ACPA was measured by an enzyme-linked immunosorbent assay, and HLA genotyping was quantified by next-generation sequencing (Ref.1). The operational taxonomic unit (OUT) analysis using 16S rRNA gene sequencing were performed. The richness of microbial diversity within-subject (alpha diversity) was scaled via Shannon entropy. The dissimilarity between microbial community composition was calculated using Bray-Curtis distance as a scale, and differences between groups (beta diversity) were tested by permutational multivariate analysis of variance (PERMANOVA). In addition, UniFrac distance calculated in consideration of the distance on the phylogenetic tree were performed.Results:Median age 70 y.o., % Female 58.8 %. Among RA and non-RA subjects, not alpha diversity but beta diversity was statistically significance (p=0.022, small in RA). In RA subjects, both alpha and beta diversity is small (p<0.0001), especially significant in ACPA positive RA (Figure 1). Amongt RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).Conclusion:Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.References:[1]Kawaguchi S, et al. Methods Mol Biol 2018;1802: 22Disclosure of Interests:None declared


2021 ◽  
Vol 11 ◽  
Author(s):  
Janneke Schreuder ◽  
Francisca C. Velkers ◽  
Alex Bossers ◽  
Ruth J. Bouwstra ◽  
Willem F. de Boer ◽  
...  

Associations between animal health and performance, and the host’s microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host’s immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens’ microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens’ immediate environment affects the microbiota composition.


Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6534 ◽  
Author(s):  
Kylie L. Brice ◽  
Pankaj Trivedi ◽  
Thomas C. Jeffries ◽  
Michaela D.J. Blyton ◽  
Christopher Mitchell ◽  
...  

BackgroundThe diet of the koala (Phascolarctos cinereus) is comprised almost exclusively of foliage from the genusEucalyptus(family Myrtaceae).Eucalyptusproduces a wide variety of potentially toxic plant secondary metabolites which have evolved as chemical defences against herbivory. The koala is classified as an obligate dietary specialist, and although dietary specialisation is rare in mammalian herbivores, it has been found elsewhere to promote a highly-conserved but low-diversity gut microbiome. The gut microbes of dietary specialists have been found sometimes to enhance tolerance of dietary PSMs, facilitating competition-free access to food. Although the koala and its gut microbes have evolved together to utilise a low nutrient, potentially toxic diet, their gut microbiome has not previously been assessed in conjunction with diet quality. Thus, linking the two may provide new insights in to the ability of the koala to extract nutrients and detoxify their potentially toxic diet.MethodThe 16S rRNA gene was used to characterise the composition and diversity of faecal bacterial communities from a wild koala population (n = 32) comprising individuals that predominately eat either one of two different food species, one the strongly preferred and relatively nutritious speciesEucalyptus viminalis, the other comprising the less preferred and less digestible speciesEucalyptus obliqua.ResultsAlpha diversity indices indicated consistently and significantly lower diversity and richness in koalas eatingE. viminalis. Assessment of beta diversity using both weighted and unweighted UniFrac matrices indicated that diet was a strong driver of both microbial community structure, and of microbial presence/absence across the combined koala population and when assessed independently. Further, principal coordinates analysis based on both the weighted and unweighted UniFrac matrices for the combined and separated populations, also revealed a separation linked to diet. During our analysis of the OTU tables we also detected a strong association between microbial community composition and host diet. We found that the phyla Bacteroidetes and Firmicutes were co-dominant in all faecal microbiomes, with Cyanobacteria also co-dominant in some individuals; however, theE. viminalisdiet produced communities dominated by the generaParabacteroidesand/orBacteroides, whereas theE. obliqua-associated diets were dominated by unidentified genera from the family Ruminococcaceae.DiscussionWe show that diet differences, even those caused by differential consumption of the foliage of two species from the same plant genus, can profoundly affect the gut microbiome of a specialist folivorous mammal, even amongst individuals in the same population. We identify key microbiota associated with each diet type and predict functions within the microbial community based on 80 previously identifiedParabacteroidesand Ruminococcaceae genomes.


Sign in / Sign up

Export Citation Format

Share Document