scholarly journals Angular momentum and parity projected multidimensionally constrained relativistic Hartree-Bogoliubov model

Author(s):  
Kun Wang ◽  
Bingnan Lu

Abstract The nuclear deformations are of fundamental importance in nuclear physics. Recently we developed a multi-dimensionally constrained relativistic Hartree-Bogoliubov (MDCRHB) model, in which all multipole deformations respecting the $V_4$ symmetry can be considered self-consistently. In this work we extend this model by incorporating the angular momentum projection (AMP) and parity projection (PP) to restore the rotational and parity symmetries broken in the mean-field level. This projected-MDCRHB (p-MDCRHB) model enables us to connect certain nuclear spectra to exotic intrinsic shapes such as triangle or tetrahedron. We present the details of the method and an exemplary calculation for $^{12}$C. We develop a triangular moment constraint to generate the triangular configurations consisting of three $\alpha$ clusters arranged as an equilateral triangle. The resulting $^{12}$C spectra are consistent with that from a triangular rigid rotor for large separations between the $\alpha$ clusters. We also calculate the $B(E2)$ and $B(E3)$ values for low-lying states and find good agreement with the experiments.

2021 ◽  
Vol 132 (1) ◽  
pp. 79-93
Author(s):  
M. A. Kuznetsov ◽  
A. B. Drovosekov ◽  
A. A. Fraerman

Abstract The magnetocaloric effect in nanosystems based on exchange-coupled ferromagnets with different Curie temperatures is calculated within the mean-field theory. Good agreement between the results of the mean-field theory and the Landau theory, valid near the critical phase transition temperature, is demonstrated for a flat-layered Fe/Gd/Fe structure. We show that a high magnetic cooling efficiency in this system is attainable in principle and prove the validity of the Maxwell relation, enabling an experimental verification of the predictions made. The theory developed for flat-layered structures is generalized to a granular medium.


1990 ◽  
Vol 258 (3) ◽  
pp. C563-C577 ◽  
Author(s):  
T. Yoshida ◽  
M. Dembo

We propose a quantitative model of the thermodynamics of hemoglobin in contact with its five major ligands (O2, CO2, Cl-, 2,3-bisphosphoglycerate, and H+). Our model incorporates the two-state formalism of J. Monod, J. Wyman, and J.P. Changeux (J. Mol. Biol. 12: 88-118, 1965) for treatment of quanternary transitions and also the mean field formalism of K. Linderstrom-Lang (C. R. Trav. Lab. Carlsberg Ser. Chim. 15: 1-30, 1924) for treatment of electrostatic interactions. On the basis of this approach, we develop an algorithm for the efficient computation of observable quantities, such as the occupancy of various ligand binding sites, and an objective statistical procedure for determining both maximum likelihood values and confidence limits of all the intrinsic thermodynamic parameters of hemoglobin. Finally, we show that the predictions of our theory are in good agreement with independent experimental observations.


1982 ◽  
Vol 60 (5) ◽  
pp. 649-653 ◽  
Author(s):  
M. Crişan ◽  
Zs. Gulácsi

The relaxation rate in the nuclear magnetic resonance of the itinerant-electron antiferromagnet was calculated as a function of temperature. A good agreement with the experimental results obtained on CrB2 has been observed. The two band model for the itinerant-electron antiferromagnet for T < TN (TN is the critical temperature) and the mean field theory for the critical region have been used to calculate [Formula: see text] as a function of temperature.


2016 ◽  
Vol 950 ◽  
pp. 1-28
Author(s):  
Yin Wang ◽  
Feng Pan ◽  
Kristina D. Launey ◽  
Yan-An Luo ◽  
J.P. Draayer

1985 ◽  
Vol 58 ◽  
Author(s):  
M. Mansuripur ◽  
M. Ruane ◽  
P. Wolniansky ◽  
S. Chase ◽  
R. Rosenvold

ABSTRACTHysteresis loops and anisotropy energy constants are measured in a magneto—optical system that combines Kerr rotation and ellipticity to enhance signal strength. Temperature dependence of the polar Kerr effect is compared with the magnetization of the iron subnetwork in the mean—field approximation and good agreement is obtained. Perpendicular magnetic anisotropy is studied by magneto—optical methods, yielding the first two coefficients of the series expansion of anisotropy energy in terms of the angleof deviation from the easy axis.


Sign in / Sign up

Export Citation Format

Share Document