hemigrapsus sanguineus
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Nadine Bleile ◽  
David W. Thieltges

Abstract Invasive predators can have wide-ranging effects on invaded ecosystems and identifying the prey spectra and preferences of invaders are important steps in assessing their potential impacts on native biota. In this study, we investigated prey preferences of two invasive crab species (Hemigrapsus sanguineus and Hemigrapsus takanoi) that recently invaded Europe's shores and compared them with preferences of native shore crabs (Carcinus maenas) of similar size. In laboratory experiments, all three crab species preferred animal over algal prey. In general, sessile mussels (Mytilus edulis) were preferred over motile amphipods (Gammarus locusta) by all three crab species but amphipod predation was lower in the invasive compared with the native crabs. For the two invasive crab species, this pattern was the same in treatments where prey was offered separately (no-choice treatments) or simultaneously (choice treatments), while for the native crabs, mussel preference disappeared in choice treatments. The general preference of mussels by all three crab species suggests that local invasions of crabs most likely lead to increased competition among crabs. In addition, given that local densities of invasive crabs are often much higher than those of native crabs, predation pressure on native mussels can be expected to strongly increase at invaded sites. In contrast, local predation pressure on amphipods may be less affected by the crab invasions. Further field studies are needed to establish the magnitude of competition and predation pressure exerted by the invaders under natural conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Blaine D. Griffen ◽  
James Bailey ◽  
Jade Carver ◽  
Ashley Vernier ◽  
Eleanor R. DiNuzzo ◽  
...  

Abstract Population sizes of invasive species are commonly characterized by boom-bust dynamics, and self-limitation via resource depletion is posited as one factor leading to these boom-bust changes in population size. Yet, while this phenomenon is well-documented in plants, few studies have demonstrated that self-limitation is possible for invasive animal species, especially those that are mobile. Here we examined the invasive Asian shore crab Hemigrapsus sanguineus, a species that reached very high abundances throughout invaded regions of North America, but has recently declined in many of these same regions. We examined the relationship between diet, energy storage, reproduction, and growth in crabs collected from the New Hampshire coast. We show that energy storage and reproduction both increase with diet quality, while growth declines with diet quality. These results suggest that self-limitation may be a contributing factor to the recent declines of H. sanguineus at sites where this invader was once much more abundant. Further, these results suggest a diet-associated tradeoff in energy allocation to different vital rates, with a focus on reproduction when high quality resources are consumed, and a focus instead on growth when poor quality resources are consumed.


Author(s):  
Mark M. Bouwmeester ◽  
Andreas M. Waser ◽  
Jaap van der Meer ◽  
David W. Thieltges

AbstractIntroductions of predators can have strong effects on native ecosystems and knowledge of the prey size selection of invasive predators is pivotal to understand their impact on native prey and intraguild competitors. Here, we investigated the prey size selection of two invasive crabs (Hemigrapsus sanguineus and Hemigrapsus takanoi) recently invading European coasts and compared them with native shore crabs (Carcinus maenas) which are known to feed on similar prey species. In laboratory experiments, we offered different size classes of native blue mussels (Mytilus edulis) to different size classes of the crab species in an effort to identify the respective prey size preferences and potential overlap in prey size range of native and invasive crabs. In all three species, the preferred prey size increased with crab size reflecting general predator–prey size relationships. Prey size preference did not differ among the crab species, i.e. crabs showed similar mussel size preference in relation to carapace width. Given that additional morphological measurements showed that both of the invasive crab species have much larger claws relative to their body size compared with the native species, this finding was surprising and may relate to differential claw morphologies or structural strength. These results suggest that the invasive crabs exert predation pressure on the same size classes of native mussels as the native crabs, with potential effects on mussel population dynamics due to the high densities of the invaders. In addition, the overlap in prey size range is likely to result in resource competition between invasive and native crabs.


Sign in / Sign up

Export Citation Format

Share Document