molecular circuitry
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Carina Venter ◽  
Rosan Meyer ◽  
Matthew Greenhawt ◽  
Isabella Pali-Schöll ◽  
Bright Nwaru ◽  
...  

Microbial metabolism of specific dietary components, such as fiber, contribute to the sophisticated inter-kingdom dialogue in the gut that maintains a stable environment with important beneficial physiological, metabolic, and immunological effects on the host. Historical changes in fiber intake may be contributing to the increase of allergic and hypersensitivity disorders as fiber-derived metabolites are evolutionarily hardwired into the molecular circuitry governing immune cell decision making processes. In this review, we highlight the importance of fiber as a dietary ingredient, its effects on the microbiome, its effects on immune regulation, and potential mechanisms for dietary fibers in the prevention and management of allergic diseases. In addition, we review the human studies examining fiber or prebiotic interventions on asthma and respiratory outcomes, allergic rhinitis, atopic dermatitis, and overall risk of atopic disorders. While exposures, interventions and outcomes were too heterogeneous for meta-analysis, there is significant potential for using fiber in targeted manipulations of the gut microbiome and its metabolic functions in promoting immune health.


Cureus ◽  
2021 ◽  
Author(s):  
Ji Hyun Yook ◽  
Muneeba Rizwan ◽  
Noor ul ain Shahid ◽  
Noreen Naguit ◽  
Rakesh Jakkoju ◽  
...  

2021 ◽  
pp. 002215542110253
Author(s):  
Ida Biunno ◽  
Emanuela Paiola ◽  
Pasquale De Blasio

“Multi-Omics” technologies have contributed greatly to the understanding of various diseases by enabling researchers to accurately and rapidly investigate the molecular circuitry that connects cellular systems. The tissue-engineered, three-dimensional (3D), in vitro disease model “organoid” integrates the “omics” results in a model system, elucidating the complex links between genotype and phenotype. These 3D structures have been used to model cancer, infectious disease, toxicity, and neurological disorders. Here, we describe the advantage of using the tissue microarray (TMA) technology to analyze human-induced pluripotent stem cell–derived cerebral organoids. Compared with the conventional processing of individual samples, sectioning and staining of TMA slides are faster and can be automated, decreasing labor and reagent costs. The TMA technology faithfully captures cell morphology variations and detects specific biomarkers. The use of this technology can scale up organoid research results in at least two ways: (1) in the number of specimens that can be analyzed simultaneously and (2) in the number of consecutive sections that can be produced for analysis with different probes and antibodies.


2021 ◽  
Author(s):  
Bai Zhang ◽  
Yi Fu ◽  
Yingzhou Lu ◽  
Zhen Zhang ◽  
Robert Clarke ◽  
...  

Data-driven differential dependency network analysis identifies in a complex and often unknown overall molecular circuitry a network of differentially connected molecular entities (pairwise selective coupling or uncoupling depending on the specific phenotypes or experimental conditions). Such differential dependency networks are typically used to assist in the inference of potential key pathways. Based on our previously developed Differential Dependency Network (DDN) method, we report here the fully implemented R and Python software tool packages for public use. The DDN algorithm uses a fused Lasso model and block-wise coordinate descent to estimate both the common and differential edges of dependency networks. The identified DDN can help to provide plausible interpretation of data, gain new insight of disease biology, and generate novel hypotheses for further validation and investigations.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Rossella Brandi ◽  
Marietta Fabiano ◽  
Corinna Giorgi ◽  
Ivan Arisi ◽  
Federico La Regina ◽  
...  

In the brain, the neurotrophin Nerve growth factor (NGF) regulates not only neuronal survival and differentiation, but also glial and microglial functions and neuroinflammation. NGF is known to regulate oligodendrogenesis, reducing myelination in the central nervous system (CNS). In this study, we found that NGF controls oligodendrogenesis by modulating the levels of miR-219a-5p, a well-known positive regulator of oligodendrocyte differentiation. We exploited an NGF-deprivation mouse model, the AD11 mice, in which the postnatal expression of an anti-NGF antibody leads to NGF neutralization and progressive neurodegeneration. Notably, we found that these mice also display increased myelination. A microRNA profiling of AD11 brain samples and qRT-PCR analyses revealed that NGF deprivation leads to an increase of miR-219a-5p levels in hippocampus and cortex and a corresponding down-regulation of its predicted targets. Neurospheres isolated from the hippocampus of AD11 mice give rise to more oligodendrocytes and this process is dependent on miR-219a-5p, as shown by decoy-mediated inhibition of this microRNA. Moreover, treatment of AD11 neurospheres with NGF inhibits miR-219a-5p up-regulation and, consequently, oligodendrocyte differentiation, while anti-NGF treatment of wild type (WT) oligodendrocyte progenitors increases miR-219a-5p expression and the number of mature cells. Overall, this study indicates that NGF inhibits oligodendrogenesis and myelination by down-regulating miR-219a-5p levels, suggesting a novel molecular circuitry that can be exploited for the discovery of new effectors for remyelination in human demyelinating diseases, such as Multiple Sclerosis.


2021 ◽  
Vol 118 (3) ◽  
pp. e2008890118
Author(s):  
Giuliano G. Stirparo ◽  
Agata Kurowski ◽  
Ayaka Yanagida ◽  
Lawrence E. Bates ◽  
Stanley E. Strawbridge ◽  
...  

OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.


Sign in / Sign up

Export Citation Format

Share Document