ecological genomics
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Miguel Vallebueno-Estrada ◽  
Sonja Steindl ◽  
Vasilina Akulova ◽  
Julia Riefler ◽  
Lucyna Slusarz ◽  
...  

Reduced representation library approaches are still a valuable tool for breeding and population and ecological genomics, even with impressive increases in sequencing capacity in recent years. Unfortunately, current approaches only allow for multiplexing up to 384 samples. To take advantage of increased sequencing capacity, we present Multi-GBS, a massively multiplexable extension to Genotyping-by-Sequencing that is also optimized for large conifer genomes. In Norway Spruce, a highly repetitive 20Gbp diploid genome with high population genetic variation, we call over a million variants in 32 genotypes from three populations, two natural forest in the Alps and Bohemian Alps, and a managed population from southeastern Austria using the existing TASSEL GBSv2 pipeline. Metric MDS analysis of replicated genotypes shows that technical bias in resulting genotype calling is minimal and that populations cluster in biologically meaningful ways.


Author(s):  
Akiko Satake ◽  
Dave Kelly

The mechanisms underlying mast seeding have traditionally been studied by collecting long-term observational data on seed crops and correlating seedfall with environmental variables. Significant progress in ecological genomics will improve our understanding of the evolution of masting by clarifying the genetic basis of masting traits and the role of natural selection in shaping those traits. Here, we summarize three important aspects in studying the evolution of masting at the genetic level: which traits govern masting, whether those traits are genetically regulated, and which taxa show wide variation in these traits. We then introduce recent studies on the molecular mechanisms of masting. Those studies measure seasonal changes in gene expression in natural conditions to quantify how multiple environmental factors combine to regulate floral initiation, which in many masting plant species is the single largest contributor to among-year variation in seed crops. We show that Fagaceae offers exceptional opportunities for evolutionary investigations because of its diversity at both the phenotypic and genetic levels and existing documented genome sequences. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


Author(s):  
Stefan Wötzel ◽  
Marco Andrello ◽  
Maria C. Albani ◽  
Marcus A. Koch ◽  
George Coupland ◽  
...  

Author(s):  
Stefan Wötzel ◽  
Marco Andrello ◽  
Maria Albani ◽  
Marcus Koch ◽  
George Coupland ◽  
...  

Many model organisms have obtained a prominent status due to an advantageous combination of their life-history characteristics, genetic properties and also practical considerations. In non-crop plants, Arabidopsis thaliana is the most renowned model and has been used as study system to elucidate numerous biological processes at the molecular level. Once a complete genome sequence was available, research has markedly accelerated and further established A. thaliana as the reference to stimulate studies in other species with different biology. Within the Brassicaceae family, the arctic-alpine perennial Arabis alpina has become a model complementary to A. thaliana to study life-history evolution and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including the diversification of its mating system, and discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. We indicate open questions from which future research might be developed in other Brassicaceae species or more distantly related plant families.


Author(s):  
Komal Chenthamara ◽  
Irina S. Druzhinina ◽  
Mohammad J. Rahimi ◽  
Marica Grujic ◽  
Feng Cai

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jie Guo ◽  
Chang Li ◽  
Junjie Zhao ◽  
Jiahui Guo ◽  
Weiping Shi ◽  
...  

Abstract Background China has diverse wheat varieties that adapt to very different environments divided into ten agro-ecological zones. A better understanding of genomic differences and patterns of selection among agro-ecological zones could provide useful information in selection of specific adaptive traits in breeding. Results We genotyped 438 wheat accessions from ten zones with kompetitive allele specific PCR (KASP) markers specific to 47 cloned genes for grain yield, quality, adaptation and stress resistance. Phylogenetic trees and principle component analysis revealed clear differences in winter and spring growth habits. Nucleotide diversity (π) and π ratio (πCL/πMCC) suggested that genetic diversity had increased during breeding, and that Chinese landraces (CL) from Zones I-V contributed little to modern Chinese cultivars (MCC). π ratio and Fst identified 24 KASP markers with 53 strong selection signals specific to Zones I (9 signals), II (12), III (5), IV (5), V (6), and VI (6). Genes with clear genetic differentiation and strong response to selection in at least three zones were leaf rust resistance gene Lr34 (I, II, III and IV), photoperiod sensitivity gene Ppd-D1 (I, II, III, IV and V), vernalization gene Vrn-B1 (V, VII, VIII and X), quality-related gene Glu-B1 (I, II and III) and yield-related genes Sus1-7B (I, II, III, IV and IX), Sus2-2A (I, II, III., IV and VI) and GW2-6B (II, V and VI). Conclusions This study examined selection of multiple genes in each zone, traced the distribution of important genetic variations and provided useful information for ecological genomics and enlightening future breeding goals for different agro-ecological zones.


2019 ◽  
Author(s):  
Maria Luisa Martin Cerezo ◽  
Marek Kucka ◽  
Karol Zub ◽  
Yingguang Frank Chan ◽  
Jarosław Bryk

AbstractBackgroundMice of the genus Apodemus are one the most common mammals in the Palaearctic region. Despite their broad range and long history of ecological observations, there are no whole-genome data available for Apodemus, hindering our ability to further exploit the genus in evolutionary and ecological genomics context.ResultsHere we present results from the double-digest restriction site-associated DNA sequencing (ddRAD-seq) on 72 individuals of A. flavicollis and 10 A. sylvaticus from four populations, sampled across 500 km distance in northern Poland. Our data present clear genetic divergence of the two species, with average p-distance, based on 21377 common loci, of 1.51% and a mutation rate of 0.0011 - 0.0019 substitutions per site per million years. We provide a catalogue of 117 highly divergent loci that enable genetic differentiation of the two species in Poland and to a large degree of 20 unrelated samples from several European countries and Tunisia. We also show evidence of admixture between the three A. flavicollis populations but demonstrate that they have negligible average population structure, with largest pairwise FST < 0.086.ConclusionOur study demonstrates the feasibility of ddRAD-seq in Apodemus and provides the first insights into the population genomics of the species.


2018 ◽  
Vol 220 (1) ◽  
pp. 300-316 ◽  
Author(s):  
Athena D. McKown ◽  
Jaroslav Klápště ◽  
Robert D. Guy ◽  
Yousry A. El-Kassaby ◽  
Shawn D. Mansfield

Sign in / Sign up

Export Citation Format

Share Document