scholarly journals Effect of softening in near-surface region on wear transition of Ti-6Al-4V alloy at elevated temperatures

2021 ◽  
Vol 1167 (1) ◽  
pp. 012014
Author(s):  
D H Du ◽  
Z J Yu ◽  
F J Tao ◽  
J An
1986 ◽  
Vol 75 ◽  
Author(s):  
U. K. Chakrabarti ◽  
S. J. Pearton ◽  
H. Barz ◽  
A. R. Vonneida ◽  
K. T. Short ◽  
...  

AbstractAℓN deposited by D.C. triode sputtering and spin-on, phosphorus-doped glass (PSG) layers on GaAs and InP were investigated as encapsulants. These films have similar expansion coefficients to both GaAs and InP, minimizing the amount of strain induced in the near-surface region of the underlying wafer. We have quantified this effect by direct measurements of the stress in the films and by using secondary ion mass spectrometry profiling to measure the redistribution of Cr and Fe in encapsulated GaAs and InP respectively during high temperature processing. The dopant redistribution is considerably less for the AℓN and PSG films compared to the more conventional SiO2 and Si3N4 layers. The interaction of the films with the substrate at elevated temperatures is minimal as determined by Auger profiling and the electrical properties of the surface after removal of the encapsulants. The composition of the films remains essentially constant after annealing, as measured by Rutherford backscattering, and the thickness uniformity over large wafer diameters (2″) can be excellent with close control of the deposition parameters. The activation characteristics of low dose, Si-implanted layers in GaAs using either PSG or AℓN are comparable to those obtained using capless annealing or SiO2 or Si3N4 encapsulation.


Author(s):  
V. A. Kharchenko

The processes of gettering of fast-diffusing metal impurities and structure defects in silicon, mainly used in the production of integrated circuits, power high-voltage devices, nuclear-doped silicon, are considered. The getters based on structural defects and gas-phase getters based on chlorine-containing compounds are analyzed. It is noted that for the formation of getters on the basis of structural defects, it is necessary to create internal sources for generation of dislocations and formation of precipitate — dislocation clusters. It is shown that dislocations are generated in the mouths of microfractures, which then form a sedentary dislocation grid on the non-working side of the plates. In the second case, defects are created in the area of the plate adjacent to the active layer of the electronic component. The process of creating an internal getter is based on the decomposition of a supersaturated solid oxygen solution in silicon, due to which a complex defect medium consisting of various precipitate-dislocation clusters is formed in the crystal. The packing defect as oxide precipitate with a cloud of Frank’s loops is formed. Two variants of creating an internal getter are considered — first is associated with the distillation of an oxygen impurity from the near-surface region of the plate, the second is associated with a fine adjustment of the distribution of vacancies along the plate thickness. The analysis of the influence of the getter as the defect structure reducing the magnitude of mechanical stress of the beginning of the generation of dislocations, which ultimately can determine the mechanical strength of the silicon wafer.This paper also considers the mechanism of gas-phase medium impurities and defects gettering with the addition of chlorine-containing compounds. It is shown that at elevated temperatures, due to the interaction of silicon atoms with chlorine in the near-surface region of the plate, it is possible to create vacancies that penetrate the sample volume with some probability. As a result, the case DСv > 0, DCi £ 0 is realized, that leads to a change in the composition of microdefects and their density. The examples of practical application of heat treatment in chlorine-containing atmosphere silicon wafer during application of the oxide film, in the case of the target the need for dissolution of the microdefects and of the withdrawal of fast diffusing impurities from the crystal volume, and to prevent the formation of generation-recombination centers in the manufacturing process of devices and in a nuclear doping silicon.


Author(s):  
J. Kameda ◽  
T. E. Bloomer ◽  
Y. Sugita ◽  
A. Ito ◽  
S. Sakurai

The effect of thermal ageing at 870 °C for 8000 h in air on the microstructure/composition and mechanical properties (RT and 870 °C) has been studied in aluminized CoCrAlY coatings consisting of four layered structure (region I-IV) of advanced gas turbine blades. Thermal ageing led to a little oxidation/nitridation and a decrease in the Al content in a near surface region I. In a coating region II, coarse Cr rich σ precipitates formed during the thermal ageing. Thermally aged internal (III) and near interface (IV) coating regions showed extensive dispersion of σ and/or Al/Ni rich β/α eutectic precipitates. Small punch tests at RT and 870 °C in air have shown that the coating regions I and II of imaged and aged blades indicated easier formation of brittle cracks regardless of the composition change. The ductility of the regions III and IV at RT and 870 °C, and the low cycle fatigue life of the region III were reduced by the thermal ageing. The mechanical degradation at elevated temperatures in the aged coating regions III and IV is elucidated by taking into account the microstructure/composition evolution and environmental oxidizing effects.


1990 ◽  
Vol 202 ◽  
Author(s):  
Huade Yao ◽  
Paul G Snyder ◽  
John A Woollam

ABSTRACTSpectroscopic ellipsometric (SE) measurements of GaAs (100) were carried out in an ultrahigh vacuum (UHV) chamber, without arsenic overpressure, at temperatures ranging from room temperature (RT) to ∼610°C. Surface changes induced at elevated temperatures were monitored by in-situ spectroscopic ellipsometry. The SE data clearly displayed in real time the process of desorption of the GaAs-surface-oxide overlayer at ∼580°C. In addition, changes in the near-surface region were observed before and after the oxide desorption. The near-subsurface region (top 50–100 Å) became less optically dense after being heated to 540°C or higher. For comparison, a pre-arsenic-capped molecular-beam-epitaxy (MBE)-grown GaAs surface was also studied. After the arsenic cap was evaporated off at ∼350°C, this surface remained smooth and clean as it was heated to higher temperatures.


2000 ◽  
Vol 12 (22) ◽  
pp. 4687-4697 ◽  
Author(s):  
K Szot ◽  
W Speier ◽  
M Pawelczyk ◽  
J Kwapuliñski ◽  
J Hulliger ◽  
...  

Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


1992 ◽  
Vol 105-110 ◽  
pp. 1383-1386 ◽  
Author(s):  
Hugh E. Evans ◽  
D.L. Smith ◽  
P.C. Rice-Evans ◽  
G.A. Gledhill ◽  
A.M. Moore

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 693
Author(s):  
Christian Ludt ◽  
Elena Ovchinnikova ◽  
Anton Kulikov ◽  
Dmitri Novikov ◽  
Sibylle Gemming ◽  
...  

This work focuses on the validation of a possible connection of the known Ruddlesden-Popper (RP) phases and the novel concept of the migration-induced field-stabilized polar (MFP) phase. To study this subject, model structures of RP phases in bulk strontium titanate are analyzed by means of density functional theory (DFT). The obtained geometries are compared to experimental MFP data. Good agreement can be found concerning atomic displacements in the pm range and lattice strain inferred by the RP phases. Looking at the energy point of view, the defect structures are on the convex hull of the Gibb’s free energy. Although the dynamics to form the discussed defect models are not addressed in detail, the interplay and stability of the described defect model will add to the possible structure scenarios within the near-surface region of strontium titanate. As a result, it can be suggested that RP phases generally favor the MFP formation.


Sign in / Sign up

Export Citation Format

Share Document