scholarly journals A Modification of Newton–Raphson Power Flow for Using in LV Distribution System

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7600
Author(s):  
Anuwat Chanhome ◽  
Surachai Chaitusaney

The Newton–Raphson (NR) method is still frequently applied for computing load flow (LF) due to its precision and quadratic convergence properties. To compute LF in a low voltage distribution system (LVDS) with unbalanced topologies, each branch model in the LVDS can be simplified by defining the neutral and ground voltages as zero and then using Kron’s reduction to transform into a 3 × 3 branch matrix, but this decreases accuracy. Therefore, this paper proposes a modified branch model that is also reduced into a 3 × 3 matrix but is derived from the impedances of the phase-A, -B, -C, neutral, and ground conductors together with the grounding resistances, thereby increasing the accuracy. Moreover, this paper proposes improved LF equations for unbalanced LVDS with both PQ and PV nodes. The improved LF equations are based on the polar-form power injection approach. The simulation results show the effectiveness of the modified branch model and the improved LF equations.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5430
Author(s):  
Daisuke Iioka ◽  
Takahiro Fujii ◽  
Toshio Tanaka ◽  
Tsuyoshi Harimoto ◽  
Junpei Motoyama

Reverse power flow from a photovoltaic (PV) system in a distribution system causes a voltage rise. A relative study regarding the reduction in the distribution feeder voltage depending on system conditions and the magnitude of reverse power flow has been conducted. Several methods for mitigating voltage rise have been proposed; however, the influence of these methods on the voltage in the distribution system, where the voltage is reduced due to reverse power flow, remains to be determined. In this study, the effect of constant power factor control in low-voltage PV systems, which are widely used as voltage rise countermeasures in distribution systems, was analyzed under the condition that the distribution line voltage decreases due to reverse power flow. Consequently, the constant power factor control of the low-voltage distribution system was found to adversely reduce voltage in the medium voltage distribution system due to the consumption of lagging reactive power by the PV systems.


2013 ◽  
Vol 133 (4) ◽  
pp. 343-349
Author(s):  
Shunsuke Kawano ◽  
Yasuhiro Hayashi ◽  
Nobuhiko Itaya ◽  
Tomihiro Takano ◽  
Tetsufumi Ono

2014 ◽  
Vol 8 (1) ◽  
pp. 404-411 ◽  
Author(s):  
Guo Rongyan ◽  
Zhang Honghui

As an important electrical safety protection device in low voltage distribution system, residual current protection device is to protect the insulation line leakage fault; the electric shock of the people plays an important role in fault. From the protection characteristics of residual current protective device to points, those can be divided into, residual current protection device for residual pulsating direct current and residual dc, according to the residual sinusoidal alternating current.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1866
Author(s):  
Zahid Javid ◽  
Ulas Karaagac ◽  
Ilhan Kocar ◽  
Ka Wing Chan

There is an increasing interest in low voltage direct current (LVDC) distribution grids due to advancements in power electronics enabling efficient and economical electrical networks in the DC paradigm. Power flow equations in LVDC grids are non-linear and non-convex due to the presence of constant power nodes. Depending on the implementation, power flow equations may lead to more than one solution and unrealistic solutions; therefore, the uniqueness of the solution should not be taken for granted. This paper proposes a new power flow solver based on a graph theory for LVDC grids having radial or meshed configurations. The solver provides a unique solution. Two test feeders composed of 33 nodes and 69 nodes are considered to validate the effectiveness of the proposed method. The proposed method is compared with a fixed-point methodology called direct load flow (DLF) having a mathematical formulation equivalent to a backward forward sweep (BFS) class of solvers in the case of radial distribution networks but that can handle meshed networks more easily thanks to the use of connectivity matrices. In addition, the convergence and uniqueness of the solution is demonstrated using a Banach fixed-point theorem. The performance of the proposed method is tested for different loading conditions. The results show that the proposed method is robust and has fast convergence characteristics even with high loading conditions. All simulations are carried out in MATLAB 2020b software.


Author(s):  
Yue Wang ◽  
David Infield ◽  
Simon Gill

This paper assumes a smart grid framework where the driving patterns for electric vehicles are known, time variations in electricity prices are communicated to householders, and data on voltage variation throughout the distribution system are available. Based on this information, an aggregator with access to this data can be employed to minimise electric vehicles charging costs to the owner whilst maintaining acceptable distribution system voltages. In this study, electric vehicle charging is assumed to take place only in the home. A single-phase Low Voltage (LV) distribution network is investigated where the local electric vehicles penetration level is assumed to be 100%. Electric vehicle use patterns have been extracted from the UK Time of Use Survey data with a 10-min resolution and the domestic base load is generated from an existing public domain model. Apart from the so-called real time price signal, which is derived from the electricity system wholesale price, the cost of battery degradation is also considered in the optimal scheduling of electric vehicles charging. A simple and effective heuristic method is proposed to minimise the electric vehicles’ charging cost whilst satisfying the requirement of state of charge for the electric vehicles’ battery. A simulation in OpenDSS over a period of 24 h has been implemented, taking care of the network constraints for voltage level at the customer connection points. The optimisation results are compared with those obtained using dynamic optimal power flow.


2012 ◽  
Vol 614-615 ◽  
pp. 1661-1665
Author(s):  
Ling Hui Deng ◽  
Zhi Xin Wang ◽  
Jian Min Duan

The low voltage DC (LVDC) distribution system is a new concept and a promising technology to be used in the future smart distribution system having high level cost-efficiency and reliability. In this paper, a low-voltage (LV) DC microgrid protection system design is proposed. Usually, an LVDC microgrid must be connected to an ac grid through converters with bidirectional power flow and, therefore, a different protection scheme is needed. This paper describes practical protection solutions for the LVDC network and an LVDC system laboratory prototype is being experimentally tested by MATLAB/SIMULINK. The results show that it is possible to use available devices to protect such a system. But other problems may arise which needs further study.


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


Sign in / Sign up

Export Citation Format

Share Document