product environmental footprint
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 39 (10) ◽  
pp. 1317-1327
Author(s):  
Giovanni Dolci ◽  
Lucia Rigamonti ◽  
Mario Grosso

The organic fraction (mainly food waste) is typically the most abundant of the separately collected waste streams. The research aims at investigating the influence of different types of collection bag on the environmental performances of the food waste management chain in Italy. A comparative life cycle assessment (LCA) between two alternative systems based on paper or bioplastic collection bags was carried out. It included the collection bags manufacturing and distribution, their use at the household, the transportation of collected food waste and its subsequent anaerobic digestion, including the valorisation of useful outputs and the management of residues. The two systems were modelled mainly with primary data related to the current management system and to tests performed on bags. The LCA was performed with two different modelling approaches applied in the environmental product declaration (EPD) system and in the product environmental footprint (PEF) studies, respectively. In the scenario representing the average conditions, higher environmental impacts are shown by the use of bioplastic bags compared to paper ones with the EPD approach (+257%/+576%). With the PEF approach, the differences between the two systems are lower (−55%/+133%). Moreover, paper bags could allow for further impact reductions assuming a decrease of the food waste collection frequency, allowed by higher weight losses and a lower generation of leachate and odour during the household storage.


2021 ◽  
Vol 13 (16) ◽  
pp. 8750
Author(s):  
Giuseppe Montanaro ◽  
Davide Amato ◽  
Nunzio Briglia ◽  
Carlo Russo ◽  
Vitale Nuzzo

Carbon (C) budget at cropping systems has not only agronomic but also environmental relevance because of their contribution to both emissions and removals of greenhouse gases (GHGs). Ideally, sustainable orchards are expected to remove atmospheric CO2 at a rate greater than that of the emissions because of (i) optimized biology of the system and (ii) reduced on-site/offsite inputs sourced by the technosphere. However, such a computation might produce inconsistent results and in turn biased communication on sustainability of the cropping systems because C accounting framework(s) are used under unclear context. This study examined the sustainability of orchards in terms of impact on GHGs focusing its significance at the field, ecosystem and global dimension analyzing some operational aspects and limitations of existing frameworks (e.g., net ecosystem carbon balance (NECB), life cycle assessment (LCA)). Global relevance of sustainable orchard was also discussed considering the C sequestration at cropland as instructed by Intergovernmental Panel on Climate Change (IPCC). The uniqueness of olive tree lifespan duration and C sequestration is discussed within the Product Environmental Footprint of agrifood product. The paper also highlighted overlapping components among the NECB, LCA and IPCC frameworks and the need for an integrated C accounting scheme for a more comprehensive and detailed mapping of sustainability in agriculture.


2021 ◽  
Vol 13 (4) ◽  
pp. 1751
Author(s):  
Felice Diekel ◽  
Natalia Mikosch ◽  
Vanessa Bach ◽  
Matthias Finkbeiner

Environmental impacts of textile production increased over the last decades. This also led to an increasing demand for sustainable textiles and ecolabels, which intend to provide information on environmental aspects of textiles for the consumer. The goal of the paper is to assess selected labels with regard to their strengths and weaknesses, as well as their coverage of relevant environmental aspects over the life cycle of textiles. We applied a characterization scheme to analyse seven selected labels (Blue Angel Textiles, bluesign®, Cotton made in Africa (CMiA), Cradle to Cradle CertifiedTM, Global Organic Textile Standard (GOTS), Global Recycled Standard (GRS), VAUDE Green Shape), and compared their focus to the environmental hotpots identified in the product environmental footprint case study of t-shirts. Most labels focus on the environmental aspects toxicity, water use, and air emissions predominantly in the upstream life cycle phases of textiles (mainly garment production), whereas some relevant impacts and life cycle phases like water in textile use phase remain neglected. We found significant differences between the ecolabels, and none of them cover all relevant aspects and impacts over the life cycle. Consumers need to be aware of these limitations when making purchase decisions.


2020 ◽  
Vol 12 (23) ◽  
pp. 10094
Author(s):  
Jan Pešta ◽  
Markéta Šerešová ◽  
Vladimír Kočí

The environmental impacts of buildings are based on the construction products, which together with their packaging can be assessed as one product system. To reduce the environmental impacts of buildings, the products and their packaging need to be optimised and analysed using environmental assessment. The purpose of this study is to assess the packaging related to the product according to the Life Cycle Assessment method. The environmental assessment was performed using the Product Environmental Footprint methodology, version 3.0. To compare the primary, secondary, and tertiary packaging, the results of the climate change indicator were used as a base to calculate the Package-to-Product (PtP) indicator. Among the considered scenarios to handle the waste packaging (landfilling scenario, material recovery scenario, energy recovery scenario, and the mixed scenario), the material recovery scenario is the most preferable and, for most of the packaging materials, the scenario with the lowest impact. Following the PtP result, the secondary packaging in the roof tile system has a significant share of the impact of the whole system (16% for the energy recovery scenario). Moreover, the results confirm the PtP indicator as the appropriate indicator to analyse the environmental impacts of construction products.


2020 ◽  
Author(s):  
Maria Jose Ferreira ◽  
Vera V. Pinto ◽  
Patricia Costa

One important step towards sustainability in footwear industries is to measure and tune the environmental impact a product makes throughout its life cycle. By performing a product’s life cycle assessment (LCA), the footwear value chain can produce footwear more responsibly, economically and in an eco-friendly way by addressing the three pillars of sustainability. LIFEGreenShoes4All teams are conducting LCA studies in representative footwear models ranging from fashion to safety footwear, with uppers in leather or textiles; midsoles in polyurethane foam (PU) or ethyl vinyl acetate (EVA); soles in vulcanized rubber, thermoplastic rubber (TR), EVA and others. These studies make possible to identify and quantify the most relevant life cycle stages, contributing to the most relevant impact categories (e. g, climate change, resource use), helping companies on the definition of how their footwear environmental performance may be improved. Considering the results, the higher contributors are materials and components, followed by waste from manufacturing and end-of-life. The creative design phase plays a significant role in footwear life cycle sustainability impact. The implementation of eco-design on the product conception is crucial to reduce the Product Environmental Footprint (PEF). LIFEGreenShoes4All is being developed by 9 partners AMF, APICCAPS, ATLANTA, CEC, CTCP, EVATHINK, ICPI, INESCOP, FICE and PESTOS (https://www.greenshoes4all.eu/).


2020 ◽  
Vol 25 (11) ◽  
pp. 2122-2139 ◽  
Author(s):  
Sahar Mirzaie ◽  
Mihaela Thuring ◽  
Karen Allacker

Abstract Purpose Life cycle assessment (LCA) is an internationally accepted method to assess the environmental impacts of buildings. A major methodological challenge remains the modelling of the end-of-life stage of buildings and allocation of benefits and burdens between systems. Various approaches are hence applied in practice to date. This paper compares the two methods widely renowned in Europe—the EC product environmental footprint (PEF) method and the CEN standards: EN 15804+A1 and EN15978—and offers insights about their fitness for achieving circularity goals. Methods The EC PEF method and the CEN EN 15804/EN 15978 standards were methodologically analysed with a focus on the end-of-life modelling and allocation approach and were applied to a building case study. The EN 15804+A1 standard explains the guidelines but does not offer a modelling formula. Accordingly, this paper proposes a formula for the CEN standards using identical parameters as in the end-of-life circular footprint formula (CFF) of the EC PEF Guidance v6.3 to increase consistency among LCA studies. The calculation formulas were then applied to a newly constructed office building. A comparative analysis of both the implementation and results are described, and recommendations are formulated. Results In the absence of databases compatible with the two LCA methods and comprising all building products, the Ecoinvent datasets had to be remodelled to enable a comparative modular assessment. This proved to be a laborious process. The EC PEF method and CEN standards showed similar impacts and hotspots for the case study building. The module D in the CEN standards includes a significant share of positive impacts, but due to collective accounting, it does not clearly communicate these benefits. The summation of burdens and benefits in the EC PEF method reduces its transparency, while the allocation and quality factors enable this method to better capture the market realities and drive circular economy goals. Conclusions The construction sector and the LCI database developers are encouraged to create the missing LCA databases compatible with the modular and end-of-life allocation modelling requirements of both methods. More prescriptive and meticulous guidelines, with further harmonization between the EC PEF method and the CEN standards and their end-of-life allocation formula, would largely increase comparability and reliability of LCA studies and communications. To improve transparency, it is recommended to report the module D impacts per life cycle stage as per the CEN standards and the burdens and benefits separately for each life cycle stage as per the EC PEF method.


Sign in / Sign up

Export Citation Format

Share Document