double bond migration
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 3)

Synlett ◽  
2022 ◽  
Author(s):  
Yang Liu ◽  
Ziyang Zhao ◽  
Chao Hu ◽  
Chuanfang Zhao ◽  
Jun Liu ◽  
...  

An efficient stereoselective synthesis of brevipolide M was established in 13 linear steps and 17.8% overall yields base on chiron approach. The key steps of our synthesis involved tandem homologation / tetrahydrofuran cyclization and sequential ring-closing metathesis (RCM) / double-bond migration in one-pot processes.


2021 ◽  
Author(s):  
Man Ki Sit ◽  
Hui Hui Cao ◽  
Yan-Dong Wu ◽  
Tsz Chun Yip ◽  
Lars Eric Bendel ◽  
...  

Synthesis of the C19-truncated maltepolide E has been accomplished via a diene–ene RCM strategy without damage to the C11–C14 alkenyl epoxy unit. Upon release of the C17-OH group, it attacked at the C14 position with double bond migration and epoxide ring-opening to furnish the C19-truncated maltepolide A and B as proposed for the biosynthesis of maltepolides. Preliminary cytotoxicity data of the synthesized C19-truncated maltepolides against L929 mouse fibroblast cell line suggest irrelevance of the vinyl epoxide and importance of the conjugated dienyl keto unit for the observed anticancer activity.


2021 ◽  
Author(s):  
Sicong Li ◽  
Priscila Bury ◽  
Fanglu Huang ◽  
Junhong Guo ◽  
Guo Sun ◽  
...  

Abstract Gentamicin is an important aminoglycoside antibiotic used for treatment of infections caused by Gram-negative bacteria. Although most of the biosynthetic pathway of gentamicin has been elucidated, a remaining intriguing question is how the intermediates JI-20A and JI-20B undergo a dideoxygenation to form gentamicin C complex. Here we show that the dideoxygenation process starts with GenP-catalyzed phosphorylation of JI-20A and JI-20Ba. The phosphorylated products are converted to C1a and C2a by concerted actions of two PLP (pyridoxal 5'-phosphate)-dependent enzymes: elimination of water and then phosphate by GenB3 and double bond migration by GenB4. Each of these reactions liberates an imine which hydrolyses to a ketone or aldehyde and is then re-aminated by GenB3 using an amino donor. Crystal structures of GenB3 and GenB4 have guided site-directed mutagenesis to reveal crucial residues for the enzymes' functions. We propose catalytic mechanisms for GenB3 and GenB4, which shed new light on the already unrivalled catalytic versatility of PLP-dependent enzymes.


2021 ◽  
Author(s):  
Sicong Li ◽  
Priscila dos Santos Bury ◽  
Fanglu Huang ◽  
Junhong Guo ◽  
Guo Sun ◽  
...  

Gentamicin is an important aminoglycoside antibiotic used for treatment of infections caused by Gram-negative bacteria. Although most of the biosynthetic pathway of gentamicin has been elucidated, a remaining intriguing question is how the intermediates JI-20A and JI-20B undergo a dideoxygenation to form gentamicin C complex. Here we show that the dideoxygenation process starts with GenP-catalyzed phosphorylation of JI-20A and JI-20Ba. The phosphorylated products are converted to C1a and C2a by concerted actions of two PLP (pyridoxal 5'-phosphate)-dependent enzymes: elimination of water and then phosphate by GenB3 and double bond migration by GenB4. Each of these reactions liberates an imine which hydrolyses to a ketone or aldehyde and is then re-aminated by GenB3 using an amino donor. Crystal structures of GenB3 and GenB4 have guided site-directed mutagenesis to reveal crucial residues for the enzymes' functions. We propose catalytic mechanisms for GenB3 and GenB4, which shed new light on the already unrivalled catalytic versatility of PLP-dependent enzymes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Tang ◽  
Tinghao Xie ◽  
Jieting Geng ◽  
Jing Hua ◽  
Zhaobo Wang

π-Conjugated polymers are usually prepared by polymerization only. In this perspective article, typical synthesis methods of conjugated polymers are briefly summarized, and a novel strategy for preparing conjugated polymers by rearrangement is proposed. During the metalation process, many conjugated structures were generated in polybutadiene by double bond migration. The effects of reaction time, temperature, and catalyst dosage on the product structure were investigated. Moreover, the structure of the products was confirmed by FTIR, 1H NMR, and 2D HSQC NMR spectra. Thus, a possible reaction mechanism was proposed, in which polybutadiene generates allylic carbanions in the presence of n-butyllithium, and then the double bonds migrate through the carbanions rearrangement to generate many conjugated structures in the backbone chain. The method shows promise in facile and low-cost synthesis of conjugated polymers without the need for precious metal catalysts.


Synlett ◽  
2021 ◽  
Author(s):  
Andreas Berkefeld ◽  
Ivana Fleischer ◽  
Prasad M. Kathe

AbstractThis report discloses the deallylation of O- and N-allyl functional groups by using a combination of a Ni-H precatalyst and excess Brønsted acid. Key steps are the isomerization of the O- or N-allyl group through Ni-catalyzed double-bond migration followed by Brønsted acid induced O/N–C bond hydrolysis. A variety of functional groups are tolerated in this protocol, highlighting its synthetic value.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Liujuan Zheng ◽  
Haowen Wang ◽  
Aili Fan ◽  
Shu-Ming Li

Abstract Oxepinamides are derivatives of anthranilyl-containing tripeptides and share an oxepin ring and a fused pyrimidinone moiety. To the best of our knowledge, no studies have been reported on the elucidation of an oxepinamide biosynthetic pathway and conversion of a quinazolinone to a pyrimidinone-fused 1H-oxepin framework by a cytochrome P450 enzyme in fungal natural product biosynthesis. Here we report the isolation of oxepinamide F from Aspergillus ustus and identification of its biosynthetic pathway by gene deletion, heterologous expression, feeding experiments, and enzyme assays. The nonribosomal peptide synthase (NRPS) OpaA assembles the quinazolinone core with d-Phe incorporation. The cytochrome P450 enzyme OpaB catalyzes alone the oxepin ring formation. The flavoenzyme OpaC installs subsequently one hydroxyl group at the oxepin ring, accompanied by double bond migration. The epimerase OpaE changes the d-Phe residue back to l-form, which is essential for the final methylation by OpaF.


2020 ◽  
Vol 16 ◽  
pp. 818-832 ◽  
Author(s):  
Péter Bagi ◽  
Réka Herbay ◽  
Nikolett Péczka ◽  
Zoltán Mucsi ◽  
István Timári ◽  
...  

A series of 1-substituted-3-methyl-2-phospholene oxides was prepared from the corresponding 3-phospholene oxides by double bond rearrangement. The 2-phospholene oxides could be obtained by heating the 3-phospholene oxides in methanesulfonic acid, or via the formation of cyclic chlorophosphonium salts. Whereas mixtures of the 2- and 3-phospholene oxides formed, when the isomerization of 3-phospholene oxides was attempted under thermal conditions, or in the presence of a base. The mechanisms of the various double bond migration pathways were elucidated by quantum chemical calculations.


Sign in / Sign up

Export Citation Format

Share Document