scholarly journals Preparation of Carbopol 934 Based Ketorolac Tromethamine Buccal Mucoadhesive Film: In Vitro, Ex Vivo, and In Vivo Assessments

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani ◽  
Mohammed Ghazwani ◽  
M. M. Ramakrishna ◽  
Umme Hani ◽  
...  

The goal of present investigation was to formulate and evaluate ketorolac tromethamine (KTM) mucoadhesive buccal films. The films were prepared by solvent evaporation method using PVP K30, HPMC K4M, HPMC K15M, carbopol 934, chitosan, and sodium alginate as polymers and propylene glycol as plasticizer. The films were evaluated for thickness, weight variation, folding endurance, surface pH, swelling index, in vitro residence time, in vitro diffusion, release kinetics, ex vivo permeation, in vitro-ex vivo correlation, and in vivo pharmacological activities such as anti-inflammatory and analgesic activity. Thickness, weight, drug content, and folding endurance were found to be uniform for the films. Surface pH was 6.85 ± 0.10 , and swelling index was the highest ( 27.27 ± 0.37 ) for the best film containing carbopol 934 along with sodium alginate and PVP K 30 (formulation code F2). In vitro residence time was greater than 5 h, and in vitro % drug release was 98.71% for F2. It exhibited 55.49% of swelling inhibition at 5 h, and above 38.88% was maintained at even 8 h. The film F2 has shown maximum analgesic response of 17 sec at 5 h, and the response of 11 sec was maintained at even 8 h. The anti-inflammatory and analgesic effect of F2 was found be maximum while sustaining the effect for prolonged period when compared to free drug solution. Thus, KTM mucoadhesive buccal film containing carbopol 934, sodium alginate, and PVP K30 could be an effective alternative for conventional therapy with improved efficacy.

2021 ◽  
Vol 20 (11) ◽  
pp. 2241-2248
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani

Purpose: To formulate and characterize tizanidine hydrochloride (TZN) and piroxicam (PRX)-loaded bilayer mucoadhesive buccal films with an intention to improve the bioavailability and patient compliance in pain management.Methods: Bilayer buccal films were prepared by solvent evaporation technique using hydroxypropyl methylcellulose (HPMC) 15cps and polyvinylpyrrolidone (PVP K30 as immediate release (IR) layer forming polymers and HPMC K15 M, PVP K 90 along with various muco adhesive polymers (Carbopol P934, sodium alginate, etc), as sustained release (SR) layer forming polymers. The prepared films werecharacterized for thickness, weight variation, folding endurance, surface pH, swelling index,mucoadhesive strength, in vitro residence time, in vitro drug release, ex vivo permeation and drug release kinetics.Results: The prepared films were of largely uniform thickness, weight and drug content. Moisture loss (%) and folding endurance were satisfactory. Surface pH was compatible with salivary fluid. Disintegration time was 85 s for F1 and 115 s for F2 of IR films. In vitro dissolution studies showed 99.12 ± 1.2 % (F1) and 90.36 ± 1.8 % (F2) were released in 45 min. Based on the above results, F1 was chosen as the optimum formulation to be combined with SR layer of TZN. Amongst the SR layers of TZN in vitro drug release. The findings show that of F2 was 98.38 ± 0.82 % and correlated with ex vivo release. Drug release followed zero order release kinetics and mechanism of drug release was non-Fickian type diffusion. In vitro residence time was greater than 5 h.Conclusion: The findings show that the bilayer buccal films demonstrate the dual impact of deliveringPRX instantly from the IR layer, with good controlled release and permeation of TZN from the SR layer, thus providing enhanced therapeutic efficacy, drug bioavailability and patient compliance.


Author(s):  
BHUVANESHWARI R. SHARANNAVAR ◽  
ANAND P. GADAD

Objective: The aim of the present work was to develop and characterize mucoadhesive film of spray dried Lovastatin (LVS) for buccal delivery to enhance bioavailability. Methods: Mucoadhesive films were prepared by solvent casting technique by using different polymers HPMCK4M, HPMC E5LV and chitosan. The successful patches were evaluated for film thickness, weight, content uniformity, surface pH, swelling index, folding endurance, ex-vivo residence time, ex-vivo bioadhesion test, in vitro drug release, ex-vivo drug permeation and stability study. Results: The thickness of all prepared patches ranged from 0.21±0.07 to 1.5±0.39 mm, the weight of the film 89.10±0.6 to 128.57±0.3 mg, drug content 85.47±0.87 to 97.33±0.31%, surface pH 5.6±0.67 to 7.6±0.98, swelling index 23.0±4.1 to 76.5±3.6%, folding endurance 165±1.9 to 350±2.5 respectively. Ex-vivo residence time ranged from 2.2±0.08to 8.2±0.17 h and ex-vivo bioadhesive strength 30±0.64 to 66±0.43 g. The formulations with HPMC E5 shown short period of residence time and shows weak force of adhesion., which might be because of low viscosity of the polymer which resulted into weak adhesion. The percentage drug release and ex-vivo drug permeation was in the following descending order HPMC K4M>HPMC E5LV>chitosan. These results confirm the extension of drug release in case of ionic polymer chitosan. The kinetics data shows that drug release and permeation follows nonfiction diffusion. Accelerated stability data revealed that there is no significant change in drug content, in vitro drug release and ex-vivo permeation. Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to enhance the drug bioavailability by preventing first-pass metabolism thus providing better therapeutic efficacy.


2017 ◽  
Vol 45 (04) ◽  
pp. 847-861 ◽  
Author(s):  
Chia-Yang Li ◽  
Katsuhiko Suzuki ◽  
Yung-Li Hung ◽  
Meng-Syuan Yang ◽  
Chung-Ping Yu ◽  
...  

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Stephen Fitzsimons ◽  
Silvia Oggero ◽  
Robyn Bruen ◽  
Cathal McCarthy ◽  
Moritz J. Strowitzki ◽  
...  

BackgroundAtherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD).MethodsmiR-155 expression was quantified in aortae from ApoE−/− mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD.ResultsHere, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs.ConclusionmiR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Abdulla Sherikar ◽  
Mohd Usman Mohd Siddique ◽  
Mahesh More ◽  
Sameer N. Goyal ◽  
Milan Milivojevic ◽  
...  

Solubility of phytochemicals is a major concern for drug delivery, permeability, and their biological response. However, advancements in the novel formulation technologies have been helping to overcome these challenges. The applications of these newer technologies are easy for commercialization and high therapeutic outcomes compared to conventional formulations. Considering these facts, the present study is aimed to prepare a silymarin-loaded eutectic mixture with three different ratios of Polyvinylpyrrolidone K30 (PVP K30) and evaluating their anti-inflammatory, and hepatoprotective effects. The preliminary phytochemical and characterization of silymarin, physical mixture, and solid dispersions suggested and successfully confirmed the formation of solid dispersion of silymarin with PVP K30. It was found that the solubility of silymarin was increased by 5-fold compared to pure silymarin. Moreover, the in vitro dissolution displayed that 83% of silymarin released within 2 h with 2.8-fold increase in dissolution rate compared to pure silymarin. Also, the in vivo study suggested that the formulation significantly reduced the carbon tetrachloride- ( 0.8620 ± 0.05034 ∗ ∗ for 1 : 3 ratio), paracetamol- ( 0.7300 ± 0.01517 ∗ ∗ for 1 : 3 ratio), and ethanol- ( 0.8100 ± 0.04037 ∗ ∗ for 1 : 3 ratio) induced hepatotoxicity in rats. Silymarin solid dispersion was prepared using homogenization methods that have prominent anti-inflammatory effect ( 0.6520 ± 0.008602 ∗ ∗ with 8.33%) in carrageenan-induced rat paw model.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 741 ◽  
Author(s):  
Jiwon Jang ◽  
Jong Sub Lee ◽  
Young-Jin Jang ◽  
Eui Su Choung ◽  
Wan Yi Li ◽  
...  

Inflammation is a fundamental process for defending against foreign antigens that involves various transcriptional regulatory processes as well as molecular signaling pathways. Despite its protective roles in the human body, the activation of inflammation may also convey various diseases including autoimmune disease and cancer. Sorbaria kirilowii is a plant originating from Asia, with no anti-inflammatory activity reported. In this paper, we discovered an anti-inflammatory effect of S. kirilowii ethanol extract (Sk-EE) both in vivo and in vitro. In vitro effects of Sk-EE were determined with lipopolysaccharide (LPS)-stimulated RAW264.7 cells, while ex vivo analysis was performed using peritoneal macrophages of thioglycollate (TG)-induced mice. Sk-EE significantly reduced the nitric oxide (NO) production of induced macrophages and inhibited the expression of inflammation-related cytokines and the activation of transcription factors. Moreover, treatment with Sk-EE also decreased the activation of proteins involved in nuclear factor (NF)-κB signaling cascade; among them, Src was a prime target of Sk-EE. For in vivo assessment of the anti-inflammatory effect of Sk-EE, HCl/EtOH was given by the oral route to mice for gastritis induction. Sk-EE injection dose-dependently reduced the inflammatory lesion area of the stomach in gastritis-induced mice. Taking these results together, Sk-EE exerts its anti-inflammatory activity by regulating intracellular NF-κB signaling pathways and also shows an authentic effect on reducing gastric inflammation.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (08) ◽  
pp. 38-48
Author(s):  
S. V Shinde ◽  
S Nikam ◽  
P Raut ◽  
M. K. Ghag ◽  

In the present research work, celecoxib (CXB) loaded solid lipid nanoparticles (SLNs) were prepared using the probe sonication method, wherein Glyceryl monostearate and Tween 80 were used as solid lipid and surfactant, respectively. To obtain the statistically optimized batch, 32 factorial design was applied. The optimized batch was characterized physicochemically and evaluated through DSC, SEM and XRD studies. The mean particle size of the optimized batch was found to be 135.41± 0.24 nm with a mean % entrapment efficiency of 80 ± 1.69%. The optimized batch was further lyophilized and dispersed into 1% w/v Carbopol 934P to form a gel. Prepared gel was further evaluated for in vitro drug release, occlusivity, ex vivo permeability, local toxicity, in vivo anti-inflammatory activity and accelerated stability study. The study resulted in stable, safe and prolonged anti-inflammatory activity with quick onset of action. Hence, celecoxib loaded solid lipid nanoparticles can be considered as promising alternative to conventional topical systems.


2018 ◽  
Vol 10 (2) ◽  
pp. 76 ◽  
Author(s):  
Shereen Ahmed Sabry

Objective: The purpose of this study was to design and formulate mucoadhesive buccal patches of sodium cromoglycate (SCG) as an alternative way to overcome its poor oral absorption and short half-life.Methods: Mucoadhesive patches were prepared by solvent casting technique using cellulose acetate butyrate (CAB) alone or in combination with mucoadhesive polymers like SCMC (sodium carboxymethyl cellulose), HPMC 100M (hydroxyl propyl methyl cellulose) and Cbp934P (carbopol) in different concentrations. The successful patches were evaluated for thickness, weight variation, folding endurance, tensile strength, drug content, surface pH, moisture uptake, swelling percentage, mucoadhesion strength, residence time, in vitro release study, ex vivo permeation and in vivo pharmacokinetic studies.Results: The thickness of all prepared patches ranged from 0.210±0.006 to0.355±0.012, folding endurance was more than 300, weight variation did not exceed 0.179±0.015, tensile strength and % elongation ranged from 6.4±0.018 to 13.1±0.024, and from 30.4±0.88 to 53.4±0.78respectively. The swelling percentage after one hour was from 20.8±0.99 to 53.2±1.5. pH of all prepared patches did not exceed 6.8, the drug content was about 99 to 101%, moisture uptake did not exceed 10%. Mucoadhesion strength and residence time ranged from 17.2±0.14 to 51.2±0.26, and from 3.35±0.25 to 7.45±0.28 respectively. The cumulative release percentage of SCG was in the following descending order CAB>CAB with Cbp934P>CAB with HPMC>CAB with SCMC. The optimized patch (F9) decreased the Cmax and increased Tmax compared to the parenteral solution.Conclusion: It can be concluded that mucoadhesive buccal patch is a promising dosage form to prolong the release of SCG and enhance its poor oral bioavailability.


Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 378 ◽  
Author(s):  
Azahara Rodríguez-Luna ◽  
Javier Ávila-Román ◽  
María González-Rodríguez ◽  
María Cózar ◽  
Antonio Rabasco ◽  
...  

Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.


Sign in / Sign up

Export Citation Format

Share Document