uncooled infrared imaging
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Vol 28 (23) ◽  
pp. 35216
Author(s):  
Adrien Mas ◽  
Guillaume Druart ◽  
Florence De La Barrière

2019 ◽  
Vol 9 (10) ◽  
pp. 1993 ◽  
Author(s):  
Ende Wang ◽  
Ping Jiang ◽  
Xukui Hou ◽  
Yalong Zhu ◽  
Liangyu Peng

In the uncooled infrared imaging systems, owing to the non-uniformity of the amplifier in the readout circuit, the infrared image has obvious stripe noise, which greatly affects its quality. In this study, the generation mechanism of stripe noise is analyzed, and a new stripe correction algorithm based on wavelet analysis and gradient equalization is proposed, according to the single-direction distribution of the fixed image noise of infrared focal plane array. The raw infrared image is transformed by a wavelet transform, and the cumulative histogram of the vertical component is convolved by a Gaussian operator with a one-dimensional matrix, in order to achieve gradient equalization in the horizontal direction. In addition, the stripe noise is further separated from the edge texture by a guided filter. The algorithm is verified by simulating noised image and real infrared image, and the comparison experiment and qualitative and quantitative analysis with the current advanced algorithm show that the correction result of the algorithm in this paper is not only mild in visual effect, but also that the structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) indexes can get the best result. It is shown that this algorithm can effectively remove stripe noise without losing details, and the correction performance of this method is better than the most advanced method.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 401 ◽  
Author(s):  
Laurent Duraffourg ◽  
Ludovic Laurent ◽  
Jean-Sébastien Moulet ◽  
Julien Arcamone ◽  
Jean-Jacques Yon

Microbolometers arethe most common uncooled infrared techniques that allow 50 mK-temperature resolution to be achieved on-scene. However, this approach struggles with both self-heating, which is inherent to the resistive readout principle, and 1/f noise. We present an alternative approach that consists of using micro/nanoresonators vibrating according to a torsional mode, and whose resonant frequency changes with the incident IR-radiation. Dense arrays of such electromechanical structures were fabricated with a 12 µm pitch at low temperature, allowing their integration on complementary metal-oxide-semiconductor (CMOS) circuits according to a post-processing method. H-shape pixels with 9 µm-long nanorods and a cross-section of 250 nm × 30 nm were fabricated to provide large thermal responses, whose experimental measurements reached up to 1024 Hz/nW. These electromechanical resonators featured a noise equivalent power of 140 pW for a response time of less than 1 ms. To our knowledge, these performances are unrivaled with such small dimensions. We also showed that a temperature sensitivity of 20 mK within a 100 ms integration time is conceivable at a 12 µm pitch by co-integrating the resonators with their readout electronics, and suggesting a new readout scheme. This sensitivity could be reached short-term by depositing on top of the nanorods a vanadium oxide layer that had a phase-transition that could possibly enhance the thermal response by one order of magnitude.


Author(s):  
Laurent Duraffourg ◽  
Ludovic Laurent ◽  
Jean-Sébastien Moulet ◽  
Julien Arcamone ◽  
Jean-Jacques Yon

Microbolometer is the most common uncooled infrared technique that allows to achieve 50mK-temperature resolution on the scene. However, this approach has to struggle with both the self-heating inherent to the resistive readout principle and the 1/f noise. We present an alternative approach that consists in using micro / nanoresonators vibrating according to a torsional mode, and whose resonant frequency changes with the incident IR-radiation. Dense arrays of such electromechanical structures were fabricated with a 12µm-pitch at low temperature allowing their integration on CMOS circuits according to a post-processing method. H-shape pixels with 9 µm-long nano-rods and a cross-section of 250 × 30 nm² were fabricated to provide large thermal responses, whose experimental measurements reached up to 1024 Hz/nW. These electromechanical resonators featured a noise equivalent power of 140pW for a response time of less than 1 ms. To our knowledge, these performance are unrivaled with such small dimensions. We also showed that a temperature sensitivity of 20 mK within 100ms-integration time is conceivable at a 12µm-pitch by co-integrating the resonators with their readout electronics and suggesting a new readout scheme. This sensitivity could be reached at short-term by depositing on top of the nano-rods a vanadium oxide layer having a phase-transition that could possibly enhance the thermal response by one order of magnitude.


2016 ◽  
Author(s):  
Dingchao Xie ◽  
Yong Song ◽  
Youchun Song ◽  
Qiang Wu ◽  
Beiyan Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document