mineral slurry
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 147 (12) ◽  
pp. 06021018
Author(s):  
Jean Carlo Grijó Louzada ◽  
Thiago Cesar de Souza Pinto ◽  
Rafael Gomes Meier ◽  
Podalyro Amaral de Souza ◽  
Laurindo de Salles Leal Filho

Author(s):  
Vadim Potemkin ◽  
Tatiana Aleksandrova

This article considers the possibility of developing a methodology for assessing the separation process of gold-sulfide raw materials, taking into account the rheological characteristics of the mineral suspension. The object of the study is the ore of the Mayskoye deposit, which is subjected to fine crushing followed by cyanidation, so the consideration of rheological properties is the most important aspect of achieving the necessary enrichment performance. In the course of the research, using the object-oriented programming language Python 3.8, a program for calculating the empirical coefficients of the three-component rheological equation was developed. The resulting equation is the determinant for the shear stress within the suspension as a function of the velocity gradient. The developed program has been used to calculate coefficients of rheological equations for three variants of solid concentration in feed which correspond to the minimum, average and maximum for hydrocyclone used in the research (400 g/l, 500 g/l and 700 g/l respectively). Then, using the Ansys Fluent software, the multiphase classification modeling problem in the hydrocyclone was solved, resulting in shear rate profiles in the cross-section of the apparatus, from which the conditions necessary for the suspension to reach a fully dispersed state were concluded. It was determined that solid concentration 400 g/l is the optimum value that ensures maximum dispersion of the mineral slurry.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Simon Larsson ◽  
Juan Manuel Rodríguez Prieto ◽  
Hannu Heiskari ◽  
Pär Jonsén

Modeling of wet stirred media mill processes is challenging since it requires the simultaneous modeling of the complex multiphysics in the interactions between grinding media, the moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model of an HIG5 pilot vertical stirred media mill with a nominal power of 7.5 kW is developed. The model is based on a particle-based coupled solver approach, where the grinding fluid is modeled with the particle finite element method (PFEM), the grinding media are modeled with the discrete element method (DEM), and the mill structure is modeled with the finite element method (FEM). The interactions between the different constituents are treated by loose (or weak) two-way couplings between the PFEM, DEM, and FEM models. Both water and a mineral slurry are used as grinding fluids, and they are modeled as Newtonian and non-Newtonian fluids, respectively. In the present work, a novel approach for transferring forces between grinding fluid and grinding media based on the Reynolds number is implemented. This force transfer is realized by specifying the drag coefficient as a function of the Reynolds number. The stirred media mill model is used to predict the mill power consumption, dynamics of both grinding fluid and grinding media, interparticle contacts of the grinding media, and the wear development on the mill structure. The numerical results obtained within the present study show good agreement with experimental measurements.


Author(s):  
Sergio Peralta ◽  
Jhon Córdova ◽  
Cesar Celis ◽  
Danmer Maza

Abstract A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in the non-Newtonian flow simulations. When possible, the numerical results obtained here are compared with other numerical and experimental ones available in open literature. The associated averaged discrepancies from such comparisons are about 1%. The results obtained from the numerical simulations carried out here highlight the usefulness of the FEM based tool used in this work for realistically predicting the behavior of 3D Newtonian and non-Newtonian laminar flows. Multiphase turbulent flows including fluid-particle interaction models will be considered in future developments of this tool such to allow it properly representing the entire mineral-slurry transport phenomenon.


2017 ◽  
Vol 56 (49) ◽  
pp. 14592-14603 ◽  
Author(s):  
Jenny L. Diaz C. ◽  
Carlos Ocampo-Martinez ◽  
Hernan Alvarez

2016 ◽  
Vol 50 ◽  
pp. 135-146 ◽  
Author(s):  
Jan F. Stener ◽  
Johan E. Carlson ◽  
Anders Sand ◽  
Bertil I. Pålsson

Sign in / Sign up

Export Citation Format

Share Document