Numerical Modelling of Mineral-Slurry Like Flows in a 3D Lid-Driven Cavity Using a Finite Element Method Based Tool

Author(s):  
Sergio Peralta ◽  
Jhon Córdova ◽  
Cesar Celis ◽  
Danmer Maza

Abstract A finite element method (FEM) based tool is used in this work to numerically modeling mineral-slurry like flows in a 3D lid-driven cavity. Accordingly, the context in which the referred FEM based tool is being developed is firstly emphasized. Both mathematical and numerical models utilized here are described next. A special emphasis is put on the flow governing equations and the particular FEM weighted residuals approach (Galerkin method) used to solve these equations. Since mineral-slurry flows both featuring relatively low flow velocities and containing large amounts of solid particles can be accounted for as laminar non-Newtonian flows, only laminar flows are discussed here. Indeed both Newtonian and non-Newtonian laminar flows are numerically studied using a 3D lid-driven cavity at two different Reynolds numbers. Two rheological models, power-law and Carreau-Yasuda, are utilized in the non-Newtonian flow simulations. When possible, the numerical results obtained here are compared with other numerical and experimental ones available in open literature. The associated averaged discrepancies from such comparisons are about 1%. The results obtained from the numerical simulations carried out here highlight the usefulness of the FEM based tool used in this work for realistically predicting the behavior of 3D Newtonian and non-Newtonian laminar flows. Multiphase turbulent flows including fluid-particle interaction models will be considered in future developments of this tool such to allow it properly representing the entire mineral-slurry transport phenomenon.

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Simon Larsson ◽  
Juan Manuel Rodríguez Prieto ◽  
Hannu Heiskari ◽  
Pär Jonsén

Modeling of wet stirred media mill processes is challenging since it requires the simultaneous modeling of the complex multiphysics in the interactions between grinding media, the moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model of an HIG5 pilot vertical stirred media mill with a nominal power of 7.5 kW is developed. The model is based on a particle-based coupled solver approach, where the grinding fluid is modeled with the particle finite element method (PFEM), the grinding media are modeled with the discrete element method (DEM), and the mill structure is modeled with the finite element method (FEM). The interactions between the different constituents are treated by loose (or weak) two-way couplings between the PFEM, DEM, and FEM models. Both water and a mineral slurry are used as grinding fluids, and they are modeled as Newtonian and non-Newtonian fluids, respectively. In the present work, a novel approach for transferring forces between grinding fluid and grinding media based on the Reynolds number is implemented. This force transfer is realized by specifying the drag coefficient as a function of the Reynolds number. The stirred media mill model is used to predict the mill power consumption, dynamics of both grinding fluid and grinding media, interparticle contacts of the grinding media, and the wear development on the mill structure. The numerical results obtained within the present study show good agreement with experimental measurements.


2017 ◽  
Vol 21 (4) ◽  
pp. 1012-1038 ◽  
Author(s):  
Roktaek Lim ◽  
Dongwoo Sheen

AbstractA cheapest stable nonconforming finite element method is presented for solving the incompressible flow in a square cavity without smoothing the corner singularities. The stable cheapest nonconforming finite element pair based on P1×P0 on rectangularmeshes [29] is employed with a minimal modification of the discontinuous Dirichlet data on the top boundary, where is the finite element space of piecewise constant pressures with the globally one-dimensional checker-board pattern subspace eliminated. The proposed Stokes elements have the least number of degrees of freedom compared to those of known stable Stokes elements. Three accuracy indications for our elements are analyzed and numerically verified. Also, various numerous computational results obtained by using our proposed element show excellent accuracy.


2013 ◽  
Vol 586 ◽  
pp. 202-205 ◽  
Author(s):  
Milos Milosevic ◽  
Nenad Mitrovic ◽  
Vesna Miletić ◽  
Uroš Tatic ◽  
Andrea Ezdenci

Local polymerization stress occurs due to polymerization shrinkage of resin based composites adhesively bonded to tooth tissues. Shrinkage causes local displacements of cavity walls, with possible occurrence of micro-cracks in the enamel, dentin and/or material itself. In order to design a cavity for experimental testing of polymerization shrinkage of dental composites using 3D optical analysis, in this paper finite element method (FEM) was used to analyze numerical models with different cavity radiuses. 3D optical strain and displacement analysis of composite materials and cavity walls is limited by equipment sensitivity i.e. 0.01% for strain and 1 micron for displacement. This paper presents the development of 3D computer premolar models with varying cavity radiuses, and local stress, strain and displacement analysis using FEM. Model verification was performed by comparing obtained results with data from the scientific literature. Using the FEM analysis of local strains, displacements and stresses exerted on cavity walls, it was concluded that the model with 1 mm radius was optimal for experimental optical 3D displacement analysis.


2018 ◽  
Vol 85 (5) ◽  
pp. 11-20
Author(s):  
Taejin Jang ◽  
Chintan Pathak ◽  
Venkat R. Subramanian

2020 ◽  
Vol 38 (2) ◽  
pp. 136-155
Author(s):  
Seddik M Khetata ◽  
Paulo AG Piloto ◽  
Ana BR Gavilán

The light steel frame walls are mostly used for non-load bearing applications. The light steel framed walls are made with studs and tracks that require fire protection, normally achieved by single plasterboard, by composite protection layers or by insulation of the cavity. The partition walls are fire rated to resist by integrity and insulation. Seven small-scale specimens were tested to define the fire resistance of non-load bearing light steel frame walls made with different materials. All tests were validated using two-dimensional numerical models, based on the finite-element method, the finite-volume method and hybrid finite-element method. A good agreement was achieved between the numerical and the experimental results from fire tests. The fire resistance increases with the number of studs and also with the thickness of the protection layers. The hybrid finite-element method solution method looks to be the best approximation model to predict fire resistance.


2019 ◽  
Vol 5 (10) ◽  
pp. 2247-2259
Author(s):  
Eman Abbas ◽  
Alaa H. Al-Zuhairi

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams with minimum reinforcement was studied.  ABAQUS program was utilized for Finite Element (FE) modeling and analysis of the beams. On the other hand, mesoscale modeling of concrete constituents was executed with the aid of ABAQUS PYTHON language and programing using excel sheets. The concrete beams under flexure were experimentally investigated as well as by the numerical analysis. The comparison between experimental and numerical results showed that the mesoscale model gives a better indication for representing the concrete models in the numerical approach and a more appropriate result when compared with the experimental results.


2004 ◽  
Vol 29 ◽  
Author(s):  
D. Chamlagain ◽  
D. Hayashi

We examined the state of stress in and around the Himalayan nappes via 2D finite element method using elastic rheology under plane strain condition. This paper describes how we used advanced numerical modelling technique, the finite element method to compute stress and fault as a function of rock layer properties, convergent displacement and boundary condition in the convergent tectonic environment. Interpretation of the calculated results remains somewhat ambiguous because of the limitation of elastic modelling, however, the results are still comparable with geological and geophysical data. Some interesting features of our models are: (1) compressive state of stress  in Himalaya; (2) effect of geometry of MHT on stress orientation; (3) the diffuse zone of failure elements along the flat-ramp-flat regions of the Main Himalayan Thrust (MHT); (4) normal and thrust faults pattern in the vicinity of Main Boundary Thrust (MBT) and Main Frontal Thrust (MFT); (5) initiation of faults at depth and their propagation toward south under increasing convergent dis placement,  which is consistent with the sequence of thrusting in Himalaya; and (6) direct correlation of simulated fault patterns with geological evidences. Thus overall features of the numerical models are able to conclude that the mid-crustal ramp, MBT and MFT are the most active structures in the present day plate kinematics.


Sign in / Sign up

Export Citation Format

Share Document