scholarly journals miR-381-3p Involves in Glioma Progression by Suppressing Tumor-Promoter Factor ANTXR1

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhiqiang Dong ◽  
Jinglong Zhang ◽  
Liang Niu ◽  
Guokuo Hou ◽  
Zhenshan Gao ◽  
...  

Accumulating studies revealed association between development of glioma and miRNA dysregulation. A case in point is miR-381-3p, but its mechanism in glioma is unclear yet. In this work, we confirmed that overexpressed miR-381-3p repressed biological functions of glioma cells. Additionally, we also discovered that upregulated anthrax toxin receptor 1 (ANTXR1) was negatively mediated by miR-381-3p. We further proved that miR-381-3p-targeted ANTXR1 was able to counteract the suppression of miR-381-3p on biological functions of glioma. We concluded that miR-381-3p and ANTXR1 were both important factors in modulating glioma progression. miR-381-3p/ANTXR1 axis is expected to be a molecular target for glioma.

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e98544 ◽  
Author(s):  
Pengjin Mei ◽  
Jin Bai ◽  
Meilin Shi ◽  
Qinghua Liu ◽  
Zhonglin Li ◽  
...  

2018 ◽  
Vol 115 (51) ◽  
pp. 13087-13092 ◽  
Author(s):  
Lin Cao ◽  
Ran Zhang ◽  
Tingting Liu ◽  
Zixian Sun ◽  
Mingxu Hu ◽  
...  

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty “spent” particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV–ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


2021 ◽  
Author(s):  
Yanqiu Zhang ◽  
Yue Li ◽  
Yuhua Fan ◽  
Baoshan Zhao ◽  
Huan Liang ◽  
...  

Abstract Background: Glioma is a fatal malignancy caused by dysregulation of cellular signal transduction. Internalization plays a key role in maintaining signalling balance. SorCS3 is involved in nerve cell receptor internalization. However, the impact of SorCS3 on the biological processes involved in glioma has not yet been reported. Here, we highlight the potential of SorCS3-mediated regulation of signalling receptor internalization as a rational target for therapeutic intervention in glioma.Methods: SorCS3 expression was analysed in the TCGA and CGGA databases and in tissue microarrays. The effects of SorCS3 on the proliferation and metastasis of glioma cells were examined in vitro and in vivo with Transwell, wound healing, EdU incorporation and nude mouse tumorigenicity assays. Fluorescent 5-FAM, SE-labelled proteins were used to detect the internalization of SorCS3 in glioma cells. Immunofluorescence and Co-IP assays were conducted to investigate the downstream effector of SorCS3. Moreover, Dynasore and Ro 08-2750, inhibitors of internalization and NGF binding to p75NTR, respectively, were used to validate the biological functions of SorCS3 in glioma.Results: Our data demonstrated that SorCS3 was downregulated in glioma tissues and closely related to favourable prognosis. Overexpression of SorCS3 inhibited the proliferation and metastasis of glioma cells in vitro and in vivo, while silencing of SorCS3 exerted the opposite effects. Mechanistic investigations showed that SorCS3 bound to p75NTR, which subsequently increased the internalization of p75NTR, and then transported p75NTR to the lysosome for degradation, ultimately contributing to inhibition of glioma progression.Conclusions: Our work suggests that SorSC3 is a marker of promising prognosis in glioma patients and suggests that SorCS3 regulates internalization, which plays an important role in inhibiting glioma progression.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi260-vi260
Author(s):  
Andrea Comba ◽  
Patrick J Dunn ◽  
Anna E Argento ◽  
Padma Kadiyala ◽  
Sebastien Motsch ◽  
...  

Abstract Mesenchymal gliomas are the most aggressive tumors that carry the worst prognosis. The origins of mesenchymal cells within brain tumors, remains poorly understood. They could originate either from invading mesenchymal cells, from perivascular smooth muscle actin+ cells, or from a mesenchymal transformation of tumor cells. Identifying the origin and function of mesenchymal cells within gliomas is essential as these cells contribute to increased glioma aggressiveness and tumor progression. In this study we used human biopsies and implantable and genetically engineered mouse models (GEMM) of GBM to study tumor mesenchymal transformation. GBM implantable models were used to analyze the molecular landscape by laser microdissection followed by RNA-Seq and bioinformatics analysis. Time lapse confocal imagining was implemented to analyze GBM cells dynamics. Our results indicate the existence of a complex intratumoral and peritumoral dynamic organization of glioma cells (i.e., Oncostreams). Multicellular structures of elongated cells compatible with mesenchymal differentiation. These structures play important roles in intratumoral movements, peritumoral invasion of normal brain, and overall glioma progression. We also show that oncostreams are molecularly distinct and display increased expression of mesenchymal genes such as Col1a1. Knocking down of Col1a1 in a GEMM of aggressive gliomas reduced tumor progression and significantly increased animal survival. Histological examination confirmed absence of Col1a1, and absence of morphologically identifiable oncostreams. Our results show that tumor cells, especially within oncostreams, display a fibroblastic-like morphology and express proteins typical of mesenchymal cells. The knockout of Col1a1 from tumoral cells eliminated oncostreams from tumors and delayed tumor progression. These data suggest that tumor cells expressing mesenchymal genes regulate the organization of mesenchymal multicellular structures, and determine glioma progression. We propose that inhibiting mesenchymal transformation of glioma cells will assist in the treatment of glioblastoma.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Dawei Xu ◽  
Jian Yu ◽  
Guojun Gao ◽  
Guangjian Lu ◽  
Yi Zhang ◽  
...  

Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) plays important regulatory roles in many solid tumors. However, the effect of DANCR in glioma progression and underlying molecular mechanisms were not entirely explored. In the present study, we determined the expression of DANCR in glioma tissues and cell lines using qRT-PCR and further defined the biological functions. Furthermore, we used luciferase reporter assay, Western blot, and RNA immunoprecipitation (RIP) to explore the underlying mechanism. Our results showed that DANCR was significantly up-regulated in glioma tissues and cell lines (U251, U118, LN229, and U87MG). High DANCR expression was correlated with advanced tumor grade. Inhibition of DANCR suppressed the glioma cells proliferation and induced cells arrested in the G0/G1 phase. In addition, we verified that DANCR could directly interact with miR-634 in glioma cells and this interaction resulted in the inhibition of downstream of RAB1A expression. The present study demonstrated that DANCR/miR-634/RAB1A axis plays crucial roles in the progression of glioma, and DANCR might potentially serve as a therapeutic target for the treatment of glioma patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xin Gong ◽  
Meng-Yi Huang

Objective. Mounting evidence has elaborated the implication of long noncoding RNAs (lncRNAs) in tumorigenesis of several cancers, including glioma. However, little was known about the mechanism of lncRNA maternally expressed gene 3 (MEG3) in the development and progression of glioma. This work is designed to explore the effect of MEG3 on glioma progression and its possible mechanism. Methods. Expressions of lncRNA-MEG3 and SMARCB1 were detected in human glioblastoma U87 and U251 cell lines. Gain and loss of function of MEG3 or/and miR-6088 was performed in U87 and U251 cells to observe its effect on cell proliferation and migration as well as on epithelial-mesenchymal transition (EMT) related markers. Luciferase reporter gene assay was employed to inspect the interactions among MEG3, miR-6088, and SMARCB1. Results. MEG3 and SMARCB1 expressions were downregulated in glioma cells. Transfection of pcDNA3.1-MEG3 or pcDNA3.1-SMARCB1 plasmids could clearly block cell proliferation, migration, and EMT progression. MEG3 functions as a sponge for miR-6088, while SMARCB1 is a downstream protein of miR-6088. Transfection of miR-6088 mimic or si-SMARCB1 could obviously reverse the favorable effect of pcDNA3.1-MEG3 on glioma progression. Conclusion. Collectively, the evidence in this study indicated that MEG3 was downregulated in glioma cells and inhibited proliferation and migration of glioma cells via regulating miR-6088/SMARCB1 axis.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 716 ◽  
Author(s):  
Pietro Mascheroni ◽  
Juan Carlos López Alfonso ◽  
Maria Kalli ◽  
Triantafyllos Stylianopoulos ◽  
Michael Meyer-Hermann ◽  
...  

Tumor microenvironment is a critical player in glioma progression, and novel therapies for its targeting have been recently proposed. In particular, stress-alleviation strategies act on the tumor by reducing its stiffness, decreasing solid stresses and improving blood perfusion. However, these microenvironmental changes trigger chemo–mechanically induced cellular phenotypic transitions whose impact on therapy outcomes is not completely understood. In this work we analyze the effects of mechanical compression on migration and proliferation of glioma cells. We derive a mathematical model of glioma progression focusing on cellular phenotypic plasticity. Our results reveal a trade-off between tumor infiltration and cellular content as a consequence of stress-alleviation approaches. We discuss how these novel findings increase the current understanding of glioma/microenvironment interactions and can contribute to new strategies for improved therapeutic outcomes.


Sign in / Sign up

Export Citation Format

Share Document