scholarly journals Distributed neural systems enable flexible attention updating during category learning

2021 ◽  
Author(s):  
Emily Weichart ◽  
Daniel Evans ◽  
Matthew Galdo ◽  
Giwon Bahg ◽  
Brandon Turner

In order to accurately categorize novel items, humans learn to selectively attend to stimulus dimensions that are most relevant to the task. Models of category learning describe the interconnected cognitive processes that contribute to selective attention as observations of stimuli and category feedback are progressively acquired. The Adaptive Attention Representation Model (AARM), for example, provides an account whereby categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among orienting, visual perception, memory retrieval, error monitoring, and goal maintenance in order to facilitate learning across trials. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. GLM analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (error monitoring), and prefrontal cortex (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM’s specification of attention modulation as a dynamic property of distributed cognitive systems.

2000 ◽  
Vol 12 (6) ◽  
pp. 977-987 ◽  
Author(s):  
Howard J. Aizenstein ◽  
Angus W. MacDonald ◽  
V. Andrew Stenger ◽  
Robert D. Nebes ◽  
Jeris K. Larson ◽  
...  

Event-related fMRI was used to dissociate the neural systems involved in category learning with and without awareness. Ten subjects performed a speeded response category learning task. Functional MR images were acquired during both explicit and implicit learning conditions. Behavioral data showed evidence of learning in both conditions. Functional imaging data showed different activation patterns in implicit and explicit trials. Decreased activation in extrastriate region V3 was found with implicit learning, and increased activation in V3, the medial temporal lobe, and frontal regions were found with explicit learning. These results support the theory that implicit and explicit learning utilize dissociable neural systems. Moreover, in both the implicit and explicit conditions a similar pattern of decreased activation was found in parietal regions. This commonality suggests that these dissociable systems also operate in parallel.


Neurocase ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Silke Lux ◽  
Valeska N. Bindrich ◽  
Hans J. Markowitsch ◽  
Gereon R. Fink

2020 ◽  
Author(s):  
Norbert Vanek ◽  
Marton Soskuthy ◽  
Asifa Majid

Recent research shows that speakers of most languages find smells difficult to abstract and name. Can verbal labels enhance the human capacity to learn smell categories? Few studies have examined how verbal labeling might affect non-visual cognitive processes, and thus far very little is known about word-assisted odor category learning. To address these gaps, we tested whether different types of training change learning gains in odor categorization. After four intensive days of training to categorize odors that were co-presented with arbitrary verbal labels, people who learned odor categories with odor-label pairs that were more consistent were significantly more accurate than people with the same perceptual experience but who had odor-label pairs that were less consistent. Both groups’ accuracy scores improved, but the learning curves differed. The context of consistent linguistic cuing supported a steady increase in correct responses from the onset of training. However, inconsistent linguistic cuing delayed the start of approximating to target odor categorization. These results show that associations formed between odors and novel verbal labels facilitate the formation of odor categories. We interpret this as showing a causal link between language and olfactory perceptual processing in supporting categorization.


2019 ◽  
Author(s):  
Joseph L. Austerweil ◽  
Shi Xian Liew ◽  
Nolan Bradley Conaway ◽  
Kenneth J. Kurtz

The ability to generate new concepts and ideas is among the most fascinating aspects of human cognition, but we do not have a strong understanding of the cognitive processes and representations underlying concept generation. In this paper, we study the generation of new categories using the computational and behavioral toolkit of traditional artificial category learning. Previous work in this domain has focused on how the statistical structure of known categories generalizes to generated categories, overlooking whether (and if so, how) contrast between the known and generated categories is a factor. We report three experiments demonstrating that contrast between what is known and what is created is of fundamental importance for categorization. We propose two novel approaches to modeling category contrast: one focused on exemplar dissimilarity and another on the representativeness heuristic. Our experiments and computational analyses demonstrate that both models capture different aspects of contrast’s role in categorization.


1998 ◽  
Vol 21 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Philippe G. Schyns ◽  
Robert L. Goldstone ◽  
Jean-Pierre Thibaut

According to one productive and influential approach to cognition, categorization, object recognition, and higher level cognitive processes operate on a set of fixed features, which are the output of lower level perceptual processes. In many situations, however, it is the higher level cognitive process being executed that influences the lower level features that are created. Rather than viewing the repertoire of features as being fixed by low-level processes, we present a theory in which people create features to subserve the representation and categorization of objects. Two types of category learning should be distinguished. Fixed space category learning occurs when new categorizations are representable with the available feature set. Flexible space category learning occurs when new categorizations cannot be represented with the features available. Whether fixed or flexible, learning depends on the featural contrasts and similarities between the new category to be represented and the individual's existing concepts. Fixed feature approaches face one of two problems with tasks that call for new features: If the fixed features are fairly high level and directly useful for categorization, then they will not be flexible enough to represent all objects that might be relevant for a new task. If the fixed features are small, subsymbolic fragments (such as pixels), then regularities at the level of the functional features required to accomplish categorizations will not be captured by these primitives. We present evidence of flexible perceptual changes arising from category learning and theoretical arguments for the importance of this flexibility. We describe conditions that promote feature creation and argue against interpreting them in terms of fixed features. Finally, we discuss the implications of functional features for object categorization, conceptual development, chunking, constructive induction, and formal models of dimensionality reduction.


1991 ◽  
Vol 3 (4) ◽  
pp. 367-376 ◽  
Author(s):  
Laurie Lundy-Ekman ◽  
Richard Ivry ◽  
Steven Keele ◽  
Marjorie Woollacott

This study investigated the link between cognitive processes and neural structures involved in motor control. Children identified as clumsy through clinical assessment procedures were tested on tasks involving movement timing, perceptual timing, and force control. The clumsy children were divided into two groups: those with soft neurological signs associated with cerebellar dysfunction and those with soft neurological signs associated with dysfunction of the basal ganglia. A control group of age-matched children who did not exhibit evidence of clumsiness or soft neurological signs was also tested. The results showed a double dissociation between the two groups of clumsy children and the tests of timing and force. Clumsy children with cerebellar signs were more variable when attempting to tap a series of equal intervals. They were also more variable on the time perception task, indicating a deficit in motor and perceptual timing. The clumsy children with basal ganglia signs were unimpaired on the timing tasks. However, they were more variable in controlling the amplitude of isometric force pulses. These results support the hypothesis that the control of time and force are separate components of coordination and that these computations are dependent on different neural systems.


2010 ◽  
Vol 104 (1) ◽  
pp. 322-335 ◽  
Author(s):  
Jessica R. Andrews-Hanna ◽  
Jay S. Reidler ◽  
Christine Huang ◽  
Randy L. Buckner

A set of brain regions known as the default network increases its activity when focus on the external world is relaxed. During such moments, participants change their focus of external attention and engage in spontaneous cognitive processes including remembering the past and imagining the future. However, the functional contributions of the default network to shifts in external attention versus internal mentation have been difficult to disentangle because the two processes are correlated under typical circumstances. To address this issue, the present study manipulated factors that promote spontaneous cognition separately from those that change the scope of external attention. Results revealed that the default network increased its activity when spontaneous cognition was maximized but not when participants increased their attention to unpredictable foveal or peripheral stimuli. To examine the nature of participants' spontaneous thoughts, a second experiment used self-report questionnaires to quantify spontaneous thoughts during extended fixation epochs. Thoughts about one's personal past and future comprised a major focus of spontaneous cognition with considerable variability. Activity correlations between the medial temporal lobe and distributed cortical regions within the default network predicted a small, but significant, portion of the observed variability. Collectively, these results suggest that during passive states, activity within the default network reflects spontaneous, internally directed cognitive processes.


1997 ◽  
Vol 9 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Roberto Cabeza ◽  
Lars Nyberg

We review PET studies of higher-order cognitive processes, including attention (sustained and selective), perception (of objects, faces, and locations), language (word listening, reading, and production), working memory (phonological and visuo-spatial), semantic memory retrieval (intentional and incidental), episodic memory retrieval (verbal and nonverbal), priming, and procedural memory (conditioning and skill learning). For each process, we identify activation patterns including the most consistently involved regions. These regions constitute important components of the network of brain regions that underlie each function.


2015 ◽  
Vol 8 (2) ◽  
pp. 355 ◽  
Author(s):  
M.B. Merkow ◽  
J.F. Burke ◽  
A.R. Ramayya ◽  
A. Sharan ◽  
M.J. Kahana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document