scholarly journals Global Mapping of Mouse CSF Flow via HEAP-METRIC Phase-contrast MRI

2021 ◽  
Author(s):  
Juchen Li ◽  
Mengchao Pei ◽  
Binshi Bo ◽  
Xinxin Zhao ◽  
Jing Cang ◽  
...  

Roles of Cerebrospinal fluid (CSF) in brain waste clearance and homeostasis has been increasingly recognized, thus measuring its flow dynamics could provide important information about its function and perturbance. While phase-contrast MRI can be used for non-invasive flow mapping, so far its mapping of low velocity flow (such as mouse brain CSF) is not possible. Here we developed a novel generalized Hadamard encoding based multi-band acceleration scheme dubbed HEAP-METRIC (Hadamard Encoding APproach of Multi-band Excitation for short TR Imaging aCcelerating), and with significantly increased SNR per time, HEAP-METRIC phase-contrast MRI achieved fast and accurate mapping of slow (~102 micron/s) flow. Utilizing this novel method, we revealed a heterogeneous global pattern of CSF flow in the awake mouse brain with a averaged flow of ~200 micron/s, and further found isoflurane anesthesia reduced CSF flow that was accompanied by reduction of glymphatic function. Therefore, we developed the novel HEAP-METRIC phase-contrast MRI for mapping low velocity flow, and demonstrated its capability for global mapping of mouse CSF flow and its potential alterations related to various physiological or pathological conditions.

Author(s):  
E.I. Kremneva ◽  
B.M. Akhmetzyanov ◽  
L.A. Dobrynina ◽  
M.V. Krotenkova

Hemodynamic parameters of blood and cerebrospinal fluid (CSF) flow can be measured in vivo using phase-contrast MRI (PC-MRI). This opens new horizons for studying the mechanisms implicated in the development and progression of age-related cerebral small vessel disease (SVD). In this paper, we analyze associations between cerebral arterial, venous and CSF flow impairments and SVD features visible on MRI. The study was carried out in 96 patients with SVD (aged 60.91 ± 6.57 years) and 23 healthy volunteers (59.13 ± 6.56 years). The protocol of the MRI examination included routine MRI sequences (T2, FLAIR, T1, SWI, and DWI) applied to assess the severity of brain damage according to STRIVE advisory standards and PC-MRI used to quantify blood flow in the major arteries and veins of the neck, the straight and upper sagittal sinuses, and CSF flow at the aqueduct level. We analyzed the associations between linear and volumetric parameters of blood/CSF flow and the degree of brain matter damage using the Fazekas scale. We observed a reduction in tABF, stVBF, sssVBF, aqLF, Saq, and ICC values and a rise in Pi associated with WMH progression, as well as a gradual decline in tABF and an increase in Pi, Saq and ICC associated with a growing number of lacunes (р < 0.05). Patients with early (< 5) MB had lower sssVBF and stVBF rates in comparison with patients without MB; aqLF, Saq, and ICC values were elevated in patients with 5 to 10 MB, as compared to patients without MB or early (< 5) MB. The established associations between MRI findings in patients with SVD and blood/CSF flow impairments suggest the important role of mechanisms implicated in the disruption of Monro–Kellie intracranial homeostasis in promoting SVD.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Amauri Dalla Corte ◽  
Carolina F. M. de Souza ◽  
Maurício Anés ◽  
Fabio K. Maeda ◽  
Armelle Lokossou ◽  
...  

2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Abraham F. BEZUIDENHOUT ◽  
Ekkehard M. KASPER ◽  
Olivier BALEDENT ◽  
Rafael ROJAS ◽  
Rafeeque A. BHADELIA

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Per Kristian Eide ◽  
Lars Magnus Valnes ◽  
Erika Kristina Lindstrøm ◽  
Kent-Andre Mardal ◽  
Geir Ringstad

Abstract Background Several central nervous system diseases are associated with disturbed cerebrospinal fluid (CSF) flow patterns and have typically been characterized in vivo by phase-contrast magnetic resonance imaging (MRI). This technique is, however, limited by its applicability in space and time. Phase-contrast MRI has yet to be compared directly with CSF tracer enhanced imaging, which can be considered gold standard for assessing long-term CSF flow dynamics within the intracranial compartment. Methods Here, we studied patients with various CSF disorders and compared MRI biomarkers of CSF space anatomy and phase-contrast MRI at level of the aqueduct and cranio-cervical junction with dynamic intrathecal contrast-enhanced MRI using the contrast agent gadobutrol as CSF tracer. Tracer enrichment of cerebral ventricles was graded 0–4 by visual assessment. An intracranial pressure (ICP) score was used as surrogate marker of intracranial compliance. Results The study included 94 patients and disclosed marked variation of CSF flow measures across disease categories. The grade of supra-aqueductal reflux of tracer varied, with strong reflux (grades 3–4) in half of patients. Ventricular tracer reflux correlated with stroke volume and aqueductal CSF pressure gradient. CSF flow in the cerebral aqueduct was retrograde (from 4th to 3rd ventricle) in one third of patients, with estimated CSF net flow volume about 1.0 L/24 h. In the cranio-cervical junction, net flow was cranially directed in 78% patients, with estimated CSF net flow volume about 4.7 L/24 h. Conclusions The present observations provide in vivo quantitative evidence for substantial variation in direction and magnitude of CSF flow, with re-direction of aqueductal flow in communicating hydrocephalus, and significant extra-cranial CSF production. The grading of ventricular reflux of tracer shows promise as a clinical useful method to assess CSF flow pattern disturbances in patients. Graphic abstract


2020 ◽  
Vol 30 (6) ◽  
pp. 746-753
Author(s):  
Rebecca E. König ◽  
Daniel Stucht ◽  
Sebastian Baecke ◽  
Ali Rashidi ◽  
Oliver Speck ◽  
...  

2013 ◽  
Vol 118 (5) ◽  
pp. 1135-1140 ◽  
Author(s):  
Elizabeth C. Clarke ◽  
Marcus A. Stoodley ◽  
Lynne E. Bilston

Object The pathogenesis of syringomyelia in association with Chiari malformation Type I (CM-I) is unclear. Studies of patients with CM-I have shown alterations in the CSF velocity profile using cardiac-gated cine phase-contrast MRI, and computational simulations have demonstrated that temporal features of the CSF pulse could contribute to syrinx development or enlargement. Few studies have reported temporal characteristics of the CSF profile, and few studies have reported on CM-I patients with and without syringomyelia separately. This study was performed to determine whether specific temporal features of the CSF flow profile may underlie the development or enlargement of a syrinx in patients with CM-I. Methods Ten healthy volunteers and 18 patients with CM-I with (8 patients) and without (10 patients) syringomyelia were studied using cardiac-gated cine phase-contrast MRI, measuring the maximum CSF velocities in the cranial and caudal directions, the timing of these maximums relative to the cardiac cycle time, the timing of caudal flow onset, timing of cranial flow onset, and the duration of caudal flow. Results The caudal CSF flow was significantly faster (p ≤ 0.01) and earlier (p < 0.02) in patients without syringomyelia than in healthy volunteers and patients with syringomyelia. There were no significant differences in the CSF velocities between patients with syringomyelia and healthy volunteers. Patients with CM-I who had syringomyelia had a significantly later start of caudal CSF flow (p < 0.01) and earlier maximum cranial velocity (p = 0.03) than healthy volunteers, but the relative durations of caudal and cranial flow were not significantly different between any of the groups. Conclusions The significantly earlier arrival and earlier peak velocity of caudal CSF flow may underlie the development of syringomyelia in patients with CM-I, and after a syrinx develops the CSF flow profile appears to stabilize.


Sign in / Sign up

Export Citation Format

Share Document