Fully solution-processed InSnO/HfGdOx thin-film transistor for light-stimulated artificial synapse

Author(s):  
Jun Li ◽  
Shengkai Wen ◽  
Dongliang Jiang ◽  
Linkang Li ◽  
Jianhua Zhang

Abstract In recent years, the research interest in brain-inspired light-stimulated artificial synaptic electronic devices has greatly increased, due to their great potential in constructing low-power, high-efficiency, and high-speed neuromorphic computing systems. However, in the field of electronic synaptic device simulation, the development of three-terminal synaptic transistors with low manufacturing cost and excellent memory function still faces huge challenges. Here, a fully solution-processed InSnO/HfGdOx thin film transistor (TFT) is fabricated by a simple and convenient solution process to verify the feasibility of light-stimulated artificial synapses. This experiment investigated the electrical and synaptic properties of the device under light stimulation conditions. The device successfully achieved some important synaptic properties, such as paired-pulse facilitation (PPF), excitatory postsynaptic current (EPSC) and the transition from short-term memory (STM) to long-term memory (LTM). In addition, the device also exhibits brain-like memory and learning behaviors under different colors of light stimulation. This work provides an important strategy for the realization of light-stimulated artificial synapses and may have good applications in the field of artificial neuromorphic computing by light signals in the future.

RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52517-52523 ◽  
Author(s):  
Jun Li ◽  
Chuan-Xin Huang ◽  
Jian-Hua Zhang

Solution-processed semiconducting single-walled carbon nanotube (s-SWCNT) thin film transistors (TFTs) based on different atomic layer deposited AlZrOx insulators are fabricated and characterized.


Nanoscale ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 3613-3620 ◽  
Author(s):  
Nan Cui ◽  
Hang Ren ◽  
Qingxin Tang ◽  
Xiaoli Zhao ◽  
Yanhong Tong ◽  
...  

A fully transparent conformal organic thin-film field-effect transistor array is obtained based on an ultrathin embedded metal-grid electrode and a solution-processed C8-BTBT film.


Sign in / Sign up

Export Citation Format

Share Document