Low-Order Modeling to Investigate Clusters of ITA Modes in Annular Combustors

Author(s):  
Guillaume J. J. Fournier ◽  
Matthias Haeringer ◽  
Camilo F. Silva ◽  
Wolfgang Polifke

Abstract The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present work an analytical model of a typical annular combustor is derived via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode order. The model explains the underlying mechanism of the clustering phenomena and the structure of the clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed, which enclose the conditions for which the 1D model remains valid when describing the thermoacoustic behavior of an annular combustor.

Author(s):  
Guillaume Jean Jacques Fournier ◽  
Matthias Haeringer ◽  
Camilo Silva ◽  
Wolfgang Polifke

Abstract The intrinsic thermoacoustic (ITA) feedbackloop constitutes a coupling between flow, flame and acoustics that does not involve the natural acoustic modes of the system. One recent study showed that ITA modes in annular combustors come in significant number and with the peculiar behavior of clusters, i.e. several modes with close frequencies. In the present work an analytical model of a typical annular combustor is derived via Riemann invariants and Bloch theory. The resulting formulation describes the full annular system as a longitudinal combustor with an outlet reflection coefficient that depends on frequency and the azimuthal mode order. The model explains the underlying mechanism of the clustering phenomena and the structure of the clusters associated with ITA modes of different azimuthal orders. In addition, a phasor analysis is proposed, which enclose the conditions for which the 1D model remains valid when describing the thermoacoustic behavior of an annular combustor.


Author(s):  
Max Zahn ◽  
Michael Betz ◽  
Moritz Schulze ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

A numerical modeling approach based on linearized Euler equations is applied to predict the linear stability of an annular combustor with and without dampers. The acoustic properties of all relevant combustor components such as damping devices, swirl burner characteristics, swirl flame dynamics, and combustor exit are individually evaluated via experimental and numerical approaches. All of the components are incorporated subsequently into the combustor model using impedances and acoustic transfer matrices to obtain an efficient procedure. This study focuses on using this approach to predict an annular combustor’s stability margin and to assess how dampers influence the modal dynamics of the first azimuthal mode. Stability predictions are successfully validated with experimental data. Different combustor components’ contributions to the acoustic damping of the entire system is also determined based on that numerical approach. Damper application in combustors can engender uncertainties in resonance frequency in the case of hot-gas ingestion. The impact of “detuned” resonators on the predicted damping rates with respect to a deviation in the resonance frequency and the eigenfrequency of the attenuated acoustic mode is therefore evaluated. The influence of dampers on the annular combustor’s stability margin is also determined.


Author(s):  
M. Bauerheim ◽  
T. Jaravel ◽  
L. Esclapez ◽  
E. Riber ◽  
L. Y. M. Gicquel ◽  
...  

This paper describes the application of a coupled acoustic model/large-eddy simulation approach to assess the effect of fuel split on combustion instabilities in an industrial ultra-low-NOx annular combustor. Multiphase flow LES and an analytical model (analytical tool to analyze and control azimuthal modes in annular chambers (ATACAMAC)) to predict thermoacoustic modes are combined to reveal and compare two mechanisms leading to thermoacoustic instabilities: (1) a gaseous type in the multipoint zone (MPZ) where acoustics generates vortex shedding, which then wrinkle the flame front, and (2) a multiphase flow type in the pilot zone (PZ) where acoustics can modify the liquid fuel transport and the evaporation process leading to gaseous fuel oscillations. The aim of this paper is to investigate these mechanisms by changing the fuel split (from 5% to 20%, mainly affecting the PZ and mechanism 2) to assess which mechanism controls the flame dynamics. First, the eigenmodes of the annular chamber are investigated using an analytical model validated by 3D Helmholtz simulations. Then, multiphase flow LES are forced at the eigenfrequencies of the chamber for three different fuel split values. Key features of the flow and flame dynamics are investigated. Results show that acoustic forcing generates gaseous fuel oscillations in the PZ, which strongly depend on the fuel split parameter. However, the correlation between acoustics and the global (pilot + multipoint) heat release fluctuations highlights no dependency on the fuel split staging. It suggests that vortex shedding in the MPZ, almost not depending on the fuel split, is the main feature controlling the flame dynamics for this engine.


2018 ◽  
Vol 10 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Driek Rouwenhorst ◽  
Jakob Hermann ◽  
Wolfgang Polifke

In annular combustion systems, thermoacoustic eigenmodes can manifest as standing waves, traveling waves or some form in between. Which dynamic solution appears in a combustor depends on details, regarding the flow field and (unintentional) breaking of the cylindrical symmetry of the annular combustion system. When these details are unknown, the specific behavior cannot be predicted from the characteristics of a single burner. Due to the (nearly) degenerate nature of the acoustic solution, annular eigenmodes come in pairs with practically the same eigenfrequency. In order to identify the thermoacoustic modes, conventional analysis of a spectral peak from a measurement does not suffice, because the peak is a superposition of the two eigenmodes. A method has been proposed to identify the two eigenmodes of given azimuthal mode order from multiple simultaneous measurements around the circumference of the combustion system. Using output-only identification on the acoustic signals, it is possible to estimate the individual mode shapes, frequencies and growth rates of the co-existing eigenmode pair. In this work, the strategy is applied to experimental data from an annular combustor. A split in the growth rate pair is observed during stable operation, depending on the equivalence ratio and flame-to-flame distance. It shows that in situ identification of annular thermoacoustics can reveal subtle dynamic effects, which is useful for testing and online monitoring of annular combustors. The moment when instability occurs can be foreseen under prevailing conditions, with simultaneous identification of the azimuthal mode structure.


2021 ◽  
pp. 1475472X2110433
Author(s):  
Vianney Masson ◽  
Stéphane Moreau ◽  
Hélène Posson ◽  
Thomas Node-Langlois

Sound transmission through a finite-lined section in a rigid annular duct with swirling and sheared mean flow is analyzed with a new mode-matching method based on the conservation of the total enthalpy and the mass flow, which does not reduce to the conservation of the pressure and the axial velocity when the swirl is non-zero. It relies on a new projection method based on the property of the Chebyshev polynomials and on the scattering matrix formalism to yield transmission losses. This new method is first validated against a finite elements method tool in the uniform axial flow case, and then provides a parametric study of the effect of swirl. At low azimuthal mode order [Formula: see text], the swirl amplifies the attenuation of the contra-rotating modes and makes the attenuation of the co-rotating modes decrease with a trend of a general shift of the transmission loss curve toward contra-rotating modes. A small rotation of the transmission loss curves at low [Formula: see text] is also generally observed. The boundary condition in the lined section has a small effect on the transmission loss, except close to the cut-on thresholds. Finally, the duct boundary-layer thickness has a significant effect on the cut-on modes and the transmission loss but not its profile.


2019 ◽  
Vol 868 ◽  
pp. 385-427 ◽  
Author(s):  
M. J. Kingan ◽  
A. B. Parry

An analytical model is presented for the wake interaction tones produced by a contra-rotating propeller. We re-cast the usual far-field radiation formulae as a double integral over a nominal propeller source annulus. Assuming that the number of blades on both propellers is large, we evaluate the integral asymptotically in terms of its leading-order contributions from interior stationary or boundary critical points which represent the specific locations on the propeller annulus that dominate the sound radiation. The asymptotic approach is powerful producing results in the form of one-line algebraic formulae that contain no integrals or special functions yet remain accurate. The asymptotics show that sweep is not necessarily beneficial and can cause the blade design to become critical for particular tones and directions in terms of a continuum of interior points distributed along a line on the propeller source annulus producing a higher-order result and thus an enhanced radiated sound field. The paper also shows how the interior points are completely consistent with the sub- or super-critical gust response of a swept blade. Tones with low and zero azimuthal mode order are treated as special cases and the asymptotics show that, as the mode order reduces, the radiated sound becomes concentrated around the flight axis where even higher-order solutions are possible, including rings and annuli of stationary points around the propeller annulus. Full numerical calculations confirm the accuracy of the asymptotic approach.


Author(s):  
M. Bauerheim ◽  
T. Jaravel ◽  
L. Esclapez ◽  
E. Riber ◽  
L. Y. M. Gicquel ◽  
...  

This paper describes the application of a coupled Acoustic model/LES approach to assess the effect of fuel split on combustion instabilities in an industrial ultra low-NOx annular combustor. Multiphase flow LES and an analytical model (ATACAMAC) to predict thermoacoustic modes are combined to reveal and compare two mechanisms leading to thermoacoustic instabilities: 1) a gaseous type in the multi-point zone where acoustics generates vortex shedding, wrinkling the flame front and 2) a multiphase flow type in the pilot zone where acoustics can modify the liquid fuel transport and the evaporation process leading to gaseous fuel oscillations. The aim of this paper is to investigate these mechanisms by changing the fuel split (from 5% to 20%, mainly affecting the pilot zone and mechanism 2) and therefore assess which mechanism controls the flame dynamics. First, the eigenmodes of the annular chamber are investigated using the analytical model and validated by 3D Helmholtz simulations. Then, multiphase flow LES are forced at the eigenfrequencies of the chamber for three different fuel split values. Key features of the flow and flame dynamics are investigated. Results show that acoustic forcing generates gaseous fuel oscillations which strongly depend on the fuel split parameter. However, the global correlation between heat release fluctuations and acoustics highlights no dependency on the fuel split staging. It suggests that vortex shedding in the multi-point zone, almost not depending on the fuel split here, is the main feature controlling the flame dynamics for this LEMCOTEC engine.


Author(s):  
Jean-Francois Bourgouin ◽  
Daniel Durox ◽  
Jonas P. Moeck ◽  
Thierry Schuller ◽  
Sébastien Candel

Annular combustors may give rise to various types of combustion instabilities. Some of the resulting oscillations coupled by transverse acoustic modes are commonly observed in practice and their suppression or reduction is an important issue which needs to be considered. The present study is carried out in a system comprising an annular plenum feeding 16 swirling injectors confined by two cylindrical quartz tubes opened to the atmosphere. Calculations based on a Helmholtz solver provide a suitable estimate of frequencies observed experimentally and reveal the modal structure corresponding to the longitudinal and transverse oscillations. High speed images obtained under reactive conditions are then processed to extract the structure of heat release rate perturbations and match this structure with that of the coupling acoustic mode. It is found that the transverse instability is coupled by a first azimuthal mode which is characterized by a time varying spin ratio. This index gives the respective levels of rotating components in the azimuthal mode. Another instability arising at a lower frequency is coupled by a longitudinal acoustic mode giving rise to high-amplitude oscillations in heat release rate in which most of the flames (but not all) are synchronized and in phase with the pressure perturbation.


2012 ◽  
Vol 1 (33) ◽  
pp. 51 ◽  
Author(s):  
Carla Faraci ◽  
Biagio Cammaroto ◽  
Luca Cavallaro ◽  
Enrico Foti

The paper reports on an experimental campaign focused on the performances of prefabricated caissons with internal rubble mound (combined caissons) in terms of incident wave energy reduction. The frontal opening and the chamber width of the caisson were changed in order to find the optimal design dimensions allowing the reflection coefficient to be reduced as much as possible. As expected, the best performances of the combined caisson occur when the rubble mound slope is gentler. The experimental results were also compared with an analytical model available in literature; such a comparison showed that the combined caisson exhibits a smaller reflection than predicted as far as wave periods higher than 8-9 s at a prototype scale are concerned.


Author(s):  
Jean-François Bourgouin ◽  
Daniel Durox ◽  
Jonas P. Moeck ◽  
Thierry Schuller ◽  
Sébastien Candel

Oscillations in fully annular systems coupled by azimuthal modes are often observed in gas turbine combustors but not well documented. One objective of the present study is to characterize this type of oscillation in a laboratory scale system, allowing detailed pressure measurements and high speed visualization of the flame motion. The experiment is designed to allow detailed investigations of this process at a stable limit cycle and for an extended period of time. Experiments reported in the present article are carried out in the MICCA facility which was used in our previous work to analyze instabilities arising when the chamber backplane was equipped with multiple swirling injectors (Bourgouin et al., 2013, “Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal Acoustic Modes,” ASME Paper No. GT2013-95010). In the present study, these units are replaced by a set of matrix injectors. The annular plenum feeds 16 such devices confined by two cylindrical quartz tubes open to the atmosphere. The multiple flames formed by the matrix injectors are laminar and have a well documented describing function. This constitutes an ideal configuration allowing systematic investigations of thermo-acoustic oscillations coupled by longitudinal or azimuthal modes while avoiding complexities inherent to swirling turbulent flames studied previously. Optical access to the chamber allows high speed imaging of light emission from the flames providing instantaneous flame patterns and indications on the heat release rate fluctuations. Eight waveguide microphones record the pressure signal at the combustor injection plane and in the plenum. Among the unstable modes observed in this setup, this analysis focuses on situations where the system features a spinning azimuthal mode. This mode is observed at a frequency which is close to that associated with the 1A mode of the plenum. A theoretical analysis is then carried out to interpret the angular shift between the nodal lines in the plenum and chamber, and the measured flame describing function (FDF) is used to quantify this shift and determine the linear growth rate.


Sign in / Sign up

Export Citation Format

Share Document