dipeptide uptake
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Yuko Ohara-Nemoto ◽  
Mohammad Tanvir Sarwar ◽  
Yu Shimoyama ◽  
Takeshi Kobayakawa ◽  
Takayuki K Nemoto

Abstract Multiple dipeptidyl-peptidases (DPPs) are present in the periplasmic space of Porphyromonas gingivalis, an asaccharolytic periodontopathic bacterium. Dipeptides produced by DPPs are presumed to be transported into the bacterial cells and metabolized to generate energy and cellular components. The present study aimed to identify a transporter responsible for dipeptide uptake in the bacterium. A real-time metabolic analysis demonstrated that P. gingivalis preferentially incorporated Gly-Xaa dipeptides, and then, single amino acids, tripeptides, and longer oligopeptides to lesser extents. Heterologous expression of the P. gingivalis serine/threonine transporter (SstT) (PGN_1460), oligopeptide transporter (Opt) (PGN_1518), and proton-dependent oligopeptide transporter (Pot) (PGN_0135) genes demonstrated that Escherichia coli expressing Pot exclusively incorporated Gly-Gly, while SstT managed Ser uptake and Opt was responsible for Gly-Gly-Gly uptake. Dipeptide uptake was significantly decreased in a P. gingivalis Δpot strain and further suppressed in a Δpot-Δopt double-deficient strain. In addition, the growth of the Δpot strain was markedly attenuated and the Δpot-Δopt strain scarcely grew, whereas the ΔsstT strain grew well almost like wild type. Consequently, these results demonstrate that predominant uptake of dipeptide in P. gingivalis is mostly managed by POT. We thus propose that Pot is a potential therapeutic target of periodontal disease and P. gingivalis-related systemic diseases.


2012 ◽  
Vol 110 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Matthew G. Nosworthy ◽  
Robert F. Bertolo ◽  
Janet A. Brunton

The H+-coupled transporter, peptide transporter 1 (PepT1), is responsible for the uptake of dietary di- and tripeptides in the intestine. Using an in vivo continuously perfused gut loop model in Yucatan miniature pigs, we measured dipeptide disappearance from four 10 cm segments placed at equidistant sites along the length of the small intestine. Pigs were studied at 1, 2, 3 (suckling) and 6 weeks (post-weaning) postnatal age. Transport capability across the PepT1 transporter was assessed by measuring the disappearance of 3H-glycylsarcosine; real-time RT-PCR was also used to quantify PepT1 mRNA. Each of the regions of intestine studied demonstrated the capacity for dipeptide transport. There were no differences among age groups in transport rates measured in the most proximal intestine segment. Transport of 3H-glycylsarcosine was significantly higher in the ileal section in the youngest age group (1 week) compared with the other the suckling groups; however, all suckling piglet groups demonstrated lower ileal transport compared with the post-weaned pigs. Colonic PepT1 mRNA was maximal in the earliest weeks of development and decreased to its lowest point by week 6. These results suggest that peptide transport in the small intestine may be of importance during the first week of suckling and again with diet transition following weaning.


2011 ◽  
Vol 78 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Anna Stentebjerg-Andersen ◽  
Ingrid Vedsted Notlevsen ◽  
Birger Brodin ◽  
Carsten Uhd Nielsen

2002 ◽  
Vol 278 (7) ◽  
pp. 4786-4791 ◽  
Author(s):  
Hong Shen ◽  
David E. Smith ◽  
Richard F. Keep ◽  
Jianming Xiang ◽  
Frank C. Brosius

1996 ◽  
Vol 271 (1) ◽  
pp. C210-C217 ◽  
Author(s):  
C. Otto ◽  
S. tom Dieck ◽  
K. Bauer

Dipeptide uptake was studied in primary cultures from rat anterior pituitaries by use of radiolabeled carnosine and the fluorescent dipeptide derivative beta-Ala-Lys-N epsilon-AMCA (AMCA is 7-amino-4-methylcoumarin-3-acetic acid). Fluorescence microscopic studies revealed that the reporter peptide specifically accumulated in the S-100 positive folliculostellate cells that do not produce any known hormone. The dipeptide derivative was taken up in unmetabolized form by an energy-dependent saturable process with apparent kinetic constants as follows: Michaelis constant, 19 microM; maximum velocity, 5.5 nmol.mg protein-1.h-1. This high-affinity transporter was strongly affected by inhibitors of sodium/proton exchangers and thus appeared to be driven by a proton gradient. Competition studies revealed that the peptide transporter exhibits broad substrate specificity with a preference for hydrophobic dipeptides. In contrast to free amino acids and the pseudotetrapeptide amastatin, tripeptides were also accepted. Compounds without an alpha- and beta-amino group, such as captopril, thiorphan, and benzylpenicillin, did not affect uptake of the reporter peptide, although they were substrates of the well-characterized intestinal and renal dipeptide transporters.


1991 ◽  
Vol 260 (3) ◽  
pp. R563-R569 ◽  
Author(s):  
S. J. Reshkin ◽  
G. A. Ahearn

The transport mechanisms for the dipeptide glycyl-L-phenylalanine (Gly-Phe) and L-phenylalanine (Phe) were characterized in fish intestinal brush-border membrane vesicles (BBMV). Gly-Phe was rapidly hydrolyzed only intravesicularly with almost total hydrolysis occurring even at 10 s. Dipeptide uptake was not stimulated by an inward gradient of Na, K, or H. Phe uptake was stimulated by an inward gradient of either Na or K but displayed an overshoot phenomenon only in the presence of an Na gradient. Kinetic analysis of the effect of substrate concentration on transport rate revealed that transport of both Gly-Phe and Phe occurred by a saturable process conforming to Michaelis-Menten kinetics. The Km for Gly-Phe was 9.8 +/- 3.5 mM, whereas that for Phe in the presence of Na or K, respectively, was 0.74 +/- 0.13 and 1.1 +/- 0.37 mM. Maximum uptake for Gly-Phe and for Phe in the presence of Na and K was 5.1, 0.9, and 0.4 nmol.mg and protein-1.5 s-1, respectively. Gly-Phe and Phe transport displayed different patterns of inhibition by dipeptides and amino acids. These results suggest that Gly-Phe and Phe are transported via different mechanisms, with Gly-Phe being hydrolyzed during a carrier-mediated, cation-independent process and Phe being transferred via a Na+ cotransport process similar to that described in mammals. During conditions of high luminal dipeptide concentrations, the Gly-Phe pathway may make a significant contribution to total Phe uptake.


1990 ◽  
Vol 267 (1) ◽  
pp. 141-147 ◽  
Author(s):  
J E Odoom ◽  
I D Campbell ◽  
J C Ellory ◽  
G F King

A new protocol for measuring cellular uptake of dipeptides was developed in which the problem of peptide hydrolysis is obviated by introduction into the cell suspension of a membrane-permeant peptidase inhibitor. The uptake of unlabelled dipeptide is readily monitored so long as some analytical technique is available for measuring the intracellular peptide concentration; in this study we used n.m.r. spectroscopy. Using this protocol, we demonstrated that dipeptide uptake by human erythrocytes occurs by simple diffusion through the lipid bilayer and not via a high-capacity protein-mediated transport system. Substantiating evidence includes demonstration that: (a) the fluxes are slow compared with known protein-mediated transport processes in human erythrocytes; (b) the uptake is not stereospecific; (c) the uptake does not display saturation kinetics; (d) the fluxes are significantly enhanced by butanol; (e) a distinct correlation exists between the size-corrected permeability coefficients of the dipeptides and their calculated n-octanol/water partition coefficients. It is calculated that under normal physiological conditions the diffusive fluxes of circulating plasma peptides into human erythrocytes are too small for these cells to play a significant role in dipeptide catabolism.


Sign in / Sign up

Export Citation Format

Share Document