coincidence detector
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 6)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ida Siveke ◽  
Mike H. Myoga ◽  
Benedikt Grothe ◽  
Felix Felmy

AbstractTo counterbalance long-term environmental changes, neuronal circuits adapt the processing of sensory information. In the auditory system, ongoing background noise drives long-lasting adaptive mechanism in binaural coincidence detector neurons in the superior olive. However, the compensatory cellular mechanisms of the binaural neurons in the medial superior olive (MSO) to long-term background changes are unexplored. Here we investigated the cellular properties of MSO neurons during long-lasting adaptations induced by moderate omnidirectional noise exposure. After noise exposure, the input resistance of MSO neurons of mature Mongolian gerbils was reduced, likely due to an upregulation of hyperpolarisation-activated cation and low voltage-activated potassium currents. Functionally, the long-lasting adaptations increased the action potential current threshold and facilitated high frequency output generation. Noise exposure accelerated the occurrence of spontaneous postsynaptic currents. Together, our data suggest that cellular adaptations in coincidence detector neurons of the MSO to continuous noise exposure likely increase the sensitivity to differences in sound pressure levels.


2019 ◽  
Author(s):  
Andrew A. Bridges ◽  
Bonnie L. Bassler

AbstractVibrio cholerae possesses multiple quorum-sensing systems that control virulence and biofilm formation among other traits. At low cell densities, when quorum-sensing autoinducers are absent, V. cholerae forms biofilms. At high cell densities, when autoinducers have accumulated, biofilm formation is repressed and dispersal occurs. Here, we focus on the roles of two well-characterized quorum-sensing autoinducers that function in parallel. One autoinducer, called CAI-1, is used to measure vibrio abundance, and the other autoinducer, called AI-2, is a broadly-made universal autoinducer that is presumed to enable V. cholerae to assess the total bacterial cell density of the vicinal community. The two V. cholerae autoinducers funnel information into a shared signal relay pathway. This feature of the quorum-sensing system architecture has made it difficult to understand how specific information can be extracted from each autoinducer, how the autoinducers might drive distinct output behaviors, and in turn, how the bacteria use quorum sensing to distinguish self from other in bacterial communities. We develop a live-cell biofilm formation and dispersal assay that allows examination of the individual and combined roles of the two autoinducers in controlling V. cholerae behavior. We show that the quorum-sensing system works as a coincidence detector in which both autoinducers must be present simultaneously for repression of biofilm formation to occur. Within that context, the CAI-1 quorum-sensing pathway is activated when only a few V. cholerae cells are present, whereas the AI-2 pathway is activated only at much higher cell density. The consequence of this asymmetry is that exogenous sources of AI-2, but not CAI-1, contribute to satisfying the coincidence detector to repress biofilm formation and promote dispersal. We propose that V. cholerae uses CAI-1 to verify that some of its kin are present before committing to the high-cell-density quorum-sensing mode, but it is, in fact, the universal autoinducer AI-2, that sets the pace of the V. cholerae quorum-sensing program. This first report of unique roles for the different V. cholerae autoinducers suggests that detection of self fosters a distinct outcome from detection of other.


2019 ◽  
Author(s):  
Davide Raccuglia ◽  
Sheng Huang ◽  
Anatoli Ender ◽  
Michael-Marcel Heim ◽  
Desiree Laber ◽  
...  

Slow-wave rhythms characteristic of deep sleep oscillate in the delta band (0.5-4 Hz) and can be found across various brain regions in vertebrates. Across systems it is however unclear how oscillations arise and whether they are the causal functional unit steering behavior. Here, for the first time in any invertebrate, we discover sleep-relevant delta oscillations in Drosophila. We find that slow-wave oscillations in the sleep-regulating R2 network increase with sleep need. Optical multi-unit voltage recordings reveal that single R2 neurons get synchronized by sensory and circadian input pathways. We show that this synchronization depends on NMDA receptor (NMDARs) coincidence detector function and on an interplay of cholinergic and glutamatergic inputs setting a resonance frequency. Genetically targeting the coincidence detector function of NMDARs in R2, and thus the uncovered mechanism underlying synchronization, abolished network-specific slow-wave oscillations. It also disrupted sleep and facilitated light-induced wakening, directly establishing a causal role for slow-wave oscillations in regulating sleep and sensory gating. We therefore propose that the synchronization-based increase in oscillatory power likely represents an evolutionarily conserved, potentially optimal, strategy for constructing sleep-regulating sensory gates.


2018 ◽  
Vol 13 (7) ◽  
pp. 596-601 ◽  
Author(s):  
Di Zhu ◽  
Qing-Yuan Zhao ◽  
Hyeongrak Choi ◽  
Tsung-Ju Lu ◽  
Andrew E. Dane ◽  
...  

2017 ◽  
Vol 38 (2) ◽  
pp. 335-346 ◽  
Author(s):  
Ryota Fukaya ◽  
Rei Yamada ◽  
Hiroshi Kuba
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document