scholarly journals Traversable wormhole in Einstein 3-form theory with self-interacting potential

2021 ◽  
Vol 2021 (10) ◽  
pp. 059
Author(s):  
Mariam Bouhmadi-López ◽  
Che-Yu Chen ◽  
Xiao Yan Chew ◽  
Yen Chin Ong ◽  
Dong-han Yeom
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Juan Liu ◽  
Zizhen Zhang

Abstract We investigate a delayed epidemic model for the propagation of worm in wireless sensor network with two latent periods. We derive sufficient conditions for local stability of the worm-induced equilibrium of the system and the existence of Hopf bifurcation by regarding different combination of two latent time delays as the bifurcation parameter and analyzing the distribution of roots of the associated characteristic equation. In particular, we investigate the direction and stability of the Hopf bifurcation by means of the normal form theory and center manifold theorem. To verify analytical results, we present numerical simulations. Also, the effect of some influential parameters of sensor network is properly executed so that the oscillations can be reduced and removed from the network.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Rafael Haenel ◽  
Sharmistha Sahoo ◽  
Timothy H. Hsieh ◽  
Marcel Franz
Keyword(s):  

2021 ◽  
pp. 2100023
Author(s):  
Zinnat Hassan ◽  
Sanjay Mandal ◽  
P.K. Sahoo
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Changjin Xu ◽  
Peiluan Li

A four-dimensional neural network model with delay is investigated. With the help of the theory of delay differential equation and Hopf bifurcation, the conditions of the equilibrium undergoing Hopf bifurcation are worked out by choosing the delay as parameter. Applying the normal form theory and the center manifold argument, we derive the explicit formulae for determining the properties of the bifurcating periodic solutions. Numerical simulations are performed to illustrate the analytical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2012 ◽  
Vol 27 (27) ◽  
pp. 1250157 ◽  
Author(s):  
USHA KULSHRESHTHA

Vector Schwinger model with a mass term for the photon, describing 2D electrodynamics with massless fermions, studied by us recently [U. Kulshreshtha, Mod. Phys. Lett. A22, 2993 (2007); U. Kulshreshtha and D. S. Kulshreshtha, Int. J. Mod. Phys. A22, 6183 (2007); U. Kulshreshtha, PoS LC2008, 008 (2008)], represents a new class of models. This theory becomes gauge-invariant when studied on the light-front. This is in contrast to the instant-form theory which is gauge-non-invariant. In this work, we study the light-front Hamiltonian and path integral quantization of this theory under appropriate light-cone gauge-fixing. The discretized light-cone quantization of the theory where we wish to make contact with the experimentally observational aspects of the theory would be presented in a separate paper.


2013 ◽  
Vol 300-301 ◽  
pp. 988-991 ◽  
Author(s):  
Wei Qin Yu

Using the analytical and numerical approaches, the nonlinear dynamic behaviors in the vicinity of a compound critical point are studied for a simply supported functionally graded materials (FGMs) rectangular plate. Normal form theory, bifurcation and stability theory are used to find closed form solutions for equilibria and periodic motions. Stability conditions of these solutions are obtained explicitly and critical boundaries are also derived. Finally, numerical results are presented to confirm the analytical predictions


Author(s):  
Eric A. Butcher ◽  
S. C. Sinha

Abstract In this paper, some analysis techniques for general time-periodic nonlinear Hamiltonian dynamical systems have been presented. Unlike the traditional perturbation or averaging methods, these techniques are applicable to systems whose Hamiltonians contain ‘strong’ parametric excitation terms. First, the well-known Liapunov-Floquet (L-F) transformation is utilized to convert the time-periodic dynamical system to a form in which the linear pan is time invariant. At this stage two viable alternatives are suggested. In the first approach, the resulting dynamical system is transformed to a Hamiltonian normal form through an application of permutation matrices. It is demonstrated that this approach is simple and straightforward as opposed to the traditional methods where a complicated set of algebraic manipulations are required. Since these operations yield Hamiltonians whose quadratic parts are integrable and time-invariant, further analysis can be carried out by the application of action-angle coordinate transformation and Hamiltonian perturbation theory. In the second approach, the resulting quasilinear time-periodic system (with a time-invariant linear part) is directly analyzed via time-dependent normal form theory. In many instances, the system can be analyzed via time-independent normal form theory or by the method of averaging. Examples of a nonlinear Mathieu’s equation and coupled nonlinear Mathieu’s equations are included and some preliminary results are presented.


Sign in / Sign up

Export Citation Format

Share Document